Chemosensory Perception

, Volume 3, Issue 1, pp 16–33 | Cite as

The Representation of Information About Taste and Odor in the Orbitofrontal Cortex

  • Edmund T. Rolls
  • Hugo D. Critchley
  • Justus V. Verhagen
  • Mikiko Kadohisa


Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs, and these neurons encode food reward in that they only respond to food when hungry and in that activations here correlate with subjective pleasantness and with individual differences in and cognitive modulation of the hedonic value of food. Information theory analysis shows a robust representation of taste in the orbitofrontal cortex, with an average mutual information of 0.45 bits for each neuron about which of six tastants (glucose, NaCl, HCl, quinine-HCl, monosodium glutamate, and water) was present, averaged across 135 gustatory neurons. The information increased with the number of neurons in the ensemble, but less than linearly, reflecting some redundancy. There was less information per neuron about which of six odors was present from orbitofrontal olfactory neurons, but the code was robust in that the information increased linearly with the number of neurons, reflecting independent information encoded by different neurons. Although some neurons were sharply tuned to individual tastants, the average encoding was quite distributed.


Orbitofrontal Cortex Taste Gustatory Cortex Information Theory Sparseness Smell Information Neuronal Responses fMRI 



This research was supported by the Medical Research Council. The participation of many colleagues in the studies cited it sincerely acknowledged. Helpful discussions with Fabian Grabenhorst are appreciated.


  1. Abbott LF, Rolls ET, Tovee MJ (1996) Representational capacity of face coding in monkeys. Cereb Cortex 6:498–505CrossRefGoogle Scholar
  2. Baylis LL, Rolls ET (1991) Responses of neurons in the primate taste cortex to glutamate. Physiol Behav 49:973–979CrossRefGoogle Scholar
  3. Baylis LL, Rolls ET, Baylis GC (1995) Afferent connections of the orbitofrontal cortex taste area of the primate. Neuroscience 64:801–812CrossRefGoogle Scholar
  4. Berlin H, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion, and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127:1108–1126CrossRefGoogle Scholar
  5. Cabanac M (1971) Physiological role of pleasure. Science 173:1103–1107CrossRefGoogle Scholar
  6. Cechetto DF, Saper CB (1987) Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 262:27–45CrossRefGoogle Scholar
  7. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205CrossRefGoogle Scholar
  8. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666Google Scholar
  9. Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70CrossRefGoogle Scholar
  10. Critchley HD (2005) Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol 493:154–166CrossRefGoogle Scholar
  11. Critchley HD, Rolls ET (1996a) Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chem Senses 21:135–145CrossRefGoogle Scholar
  12. Critchley HD, Rolls ET (1996b) Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J Neurophysiol 75:1673–1686Google Scholar
  13. Critchley HD, Rolls ET (1996c) Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J Neurophysiol 75:1659–1672Google Scholar
  14. de Araujo IET, Rolls ET (2004) The representation in the human brain of food texture and oral fat. J Neurosci 24:3086–3093CrossRefGoogle Scholar
  15. de Araujo IET, Kringelbach ML, Rolls ET, McGlone F (2003a) Human cortical responses to water in the mouth, and the effects of thirst. J Neurophysiol 90:1865–1876CrossRefGoogle Scholar
  16. de Araujo IET, Kringelbach ML, Rolls ET, Hobden P (2003b) The representation of umami taste in the human brain. J Neurophysiol 90:313–319CrossRefGoogle Scholar
  17. de Araujo IET, Rolls ET, Kringelbach ML, McGlone F, Phillips N (2003c) Taste–olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J NeuroSci 18:2059–2068CrossRefGoogle Scholar
  18. de Araujo IET, Rolls ET, Velazco MI, Margot C, Cayeux I (2005) Cognitive modulation of olfactory processing. Neuron 46:671–679CrossRefGoogle Scholar
  19. Francis S, Rolls ET, Bowtell R, McGlone F, O'Doherty J, Browning A, Clare S, Smith E (1999) The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. NeuroReport 10:453–459CrossRefGoogle Scholar
  20. Franco L, Rolls ET, Aggelopoulos NC, Jerez JM (2007) Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biol Cybern 96:547–560CrossRefGoogle Scholar
  21. Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE, Ravussin E, Reiman EM, Tataranni PA (2001) Effect of satiation on brain activity in obese and lean women. Obes Res 9:676–684CrossRefGoogle Scholar
  22. Gilbertson TA (1998) Gustatory mechanisms for the detection of fat. Curr Opin Neurobiol 8:447–452CrossRefGoogle Scholar
  23. Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–1107CrossRefGoogle Scholar
  24. Grabenhorst F, Rolls ET (2008) Selective attention to affective value alters how the brain processes taste stimuli. Eur J NeuroSci 27:723–729CrossRefGoogle Scholar
  25. Grabenhorst F, Rolls ET (2009) Different representations of relative and absolute value in the human brain. Neuroimage 48:258–268CrossRefGoogle Scholar
  26. Grabenhorst F, Rolls ET, Bilderbeck A (2008) How cognition modulates affective responses to taste and flavor: top down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex 18:1549–1559CrossRefGoogle Scholar
  27. Grabenhorst F, Rolls ET, Parris BA, D’Souza A (2009) How the brain represents the reward value of fat in the mouth. Cerebral Cortex. doi: 10.1093/cercor/bhp169
  28. Grabenhorst F, Rolls ET, Margot C, da Silva MAAP, Velazco MI (2007) How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures. J Neurosci 27:13532–13540CrossRefGoogle Scholar
  29. Haase L, Cerf-Ducastel B, Murphy C (2009) Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage 44:1008–1021CrossRefGoogle Scholar
  30. Hallock RM, Di Lorenzo PM (2006) Temporal coding in the gustatory system. Neurosci Biobehav Rev 30:1145–1160CrossRefGoogle Scholar
  31. Hetherington MM (2007) Cues to overeat: psychological factors influencing overconsumption. Proc Nutr Soc 66:113–123CrossRefGoogle Scholar
  32. Hornak J, Bramham J, Rolls ET, Morris RG, O’Doherty J, Bullock PR, Polkey CE (2003) Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain 126:1691–1712CrossRefGoogle Scholar
  33. Kadohisa M, Rolls ET, Verhagen JV (2004) Orbitofrontal cortex neuronal representation of temperature and capsaicin in the mouth. Neuroscience 127:207–221CrossRefGoogle Scholar
  34. Kadohisa M, Rolls ET, Verhagen JV (2005) Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex, and amygdala. Chem Senses 30:401–419CrossRefGoogle Scholar
  35. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13:1064–1071CrossRefGoogle Scholar
  36. Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7:400–409CrossRefGoogle Scholar
  37. Maruyama Y, Pereira E, Margolskee RF, Chaudhari N, Roper SD (2006) Umami responses in mouse taste cells indicate more than one receptor. J Neurosci 26:2227–2234CrossRefGoogle Scholar
  38. Mattes RD (2009) Is there a fatty acid taste? Annu Rev Nutr 29:305–327CrossRefGoogle Scholar
  39. McCabe C, Rolls ET (2007) Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J NeuroSci 25:1855–1864CrossRefGoogle Scholar
  40. McCabe C, Rolls ET, Bilderbeck A, McGlone F (2008) Cognitive influences on the affective representation of touch and the sight of touch in the human brain. Soc Cogn Affect Neurosci 3:97–108CrossRefGoogle Scholar
  41. Merrill EG, Ainsworth A (1972) Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng 10:662–672CrossRefGoogle Scholar
  42. Nitschke JB, Dixon GE, Sarinopoulos I, Short SJ, Cohen JD, Smith EE, Kosslyn SM, Rose RM, Davidson RJ (2006) Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat Neurosci 9:435–442CrossRefGoogle Scholar
  43. Norgren R (1984) Central neural mechanisms of taste. In: Darien-Smith I (ed) Handbook of physiology—the nervous system III. Sensory processes 1. American Physiological Society, Washington, pp 1087–1128Google Scholar
  44. Norgren R (1988) The central gustatory system in humans. In: Paxinos G (ed) The human nervous system. Academic, New YorkGoogle Scholar
  45. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satiety related olfactory activation of the human orbitofrontal cortex. NeuroReport 11:893–897CrossRefGoogle Scholar
  46. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001) The representation of pleasant and aversive taste in the human brain. J Neurophysiol 85:1315–1321Google Scholar
  47. O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33:815–826CrossRefGoogle Scholar
  48. Poellinger A, Thomas R, Lio P, Lee A, Makris N, Rosen BR, Kwong KK (2001) Activation and habituation in olfaction—an fMRI study. NeuroImage 13:547–560CrossRefGoogle Scholar
  49. Pritchard TC, Edwards EM, Smith CA, Hilgert KG, Gavlick AM, Maryniak TD, Schwartz GJ, Scott TR (2005) Gustatory neural responses in the medial orbitofrontal cortex of the old world monkey. J Neurosci 25:6047–6056CrossRefGoogle Scholar
  50. Rolls ET (1981) Central nervous mechanisms related to feeding and appetite. Br Med Bull 37:131–134Google Scholar
  51. Rolls ET (1996) The orbitofrontal cortex. Philos Trans R Soc Lond B 351:1433–1444CrossRefGoogle Scholar
  52. Rolls ET (1997) Taste and olfactory processing in the brain and its relation to the control of eating. Crit Rev Neurobiol 11:263–287Google Scholar
  53. Rolls ET (1999) The functions of the orbitofrontal cortex. Neurocase 5:301–312CrossRefGoogle Scholar
  54. Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218CrossRefGoogle Scholar
  55. Rolls ET (2005) Emotion explained. Oxford University Press, OxfordCrossRefGoogle Scholar
  56. Rolls ET (2007a) Sensory processing in the brain related to the control of food intake. Proc Nutr Soc 66:96–112CrossRefGoogle Scholar
  57. Rolls ET (2007b) Understanding the mechanisms of food intake and obesity. Obesity Reviews 8:67–72CrossRefGoogle Scholar
  58. Rolls ET (2008a) Memory, attention, and decision-making: a unifying computational neuroscience approach. Oxford University Press, OxfordGoogle Scholar
  59. Rolls ET (2008b) Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung 95:131–164CrossRefGoogle Scholar
  60. Rolls ET (2009a) Functional neuroimaging of umami taste: what makes umami pleasant. Am J Clin Nutr 90:804S–813SCrossRefGoogle Scholar
  61. Rolls ET (2009b) Taste, olfactory and food texture processing in the brain and the control of appetite. In: Dube L, Bechara A, Dagher A, Drewnowski A, LeBel J, James P, Richard D, Yada RY (eds) Obesity prevention. Elsevier, AmsterdamGoogle Scholar
  62. Rolls ET, Rolls BJ (1977) Activity of neurones in sensory, hypothalamic and motor areas during feeding in the monkey. In: Katsuki Y, Sato M, Takagi S, Oomura Y (eds) Food intake and chemical senses. University of Tokyo Press, Tokyo, pp 525–549Google Scholar
  63. Rolls ET, Rolls BJ (1982) Brain mechanisms involved in feeding. In: Barker LM (ed) Psychobiology of human food selection. AVI Publishing Company, Westport, pp 33–62Google Scholar
  64. Rolls BJ, Hetherington M (1989) The role of variety in eating and body weight regulation. In: Shepherd R (ed) Handbook of the psychophysiology of human eating. Wiley, Chichester, pp 57–84Google Scholar
  65. Rolls ET, Treves A (1990) The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. Network 1:407–421CrossRefGoogle Scholar
  66. Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 14:5437–5452Google Scholar
  67. Rolls ET, Rolls JH (1997) Olfactory sensory-specific satiety in humans. Physiol Behav 61:461–473CrossRefGoogle Scholar
  68. Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, OxfordGoogle Scholar
  69. Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford University Press, OxfordGoogle Scholar
  70. Rolls ET, Scott TR (2003) Central taste anatomy and neurophysiology. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Dekker, New York, pp 679–705Google Scholar
  71. Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244CrossRefGoogle Scholar
  72. Rolls BJ, Rolls ET, Rowe EA, Sweeney K (1981a) Sensory specific satiety in man. Physiol Behav 27:137–142CrossRefGoogle Scholar
  73. Rolls BJ, Rowe EA, Rolls ET, Kingston B, Megson A, Gunary R (1981b) Variety in a meal enhances food intake in man. Physiol Behav 26:215–221CrossRefGoogle Scholar
  74. Rolls BJ, Rowe EA, Rolls ET (1982) How sensory properties of foods affect human feeding behavior. Physiol Behav 29:409–417CrossRefGoogle Scholar
  75. Rolls BJ, Van Duijenvoorde PM, Rowe EA (1983a) Variety in the diet enhances intake in a meal and contributes to the development of obesity in the rat. Physiol Behav 31:21–27CrossRefGoogle Scholar
  76. Rolls BJ, Rolls ET, Rowe EA (1983b) Body fat control and obesity. Behav Brain Sci 4:744–745CrossRefGoogle Scholar
  77. Rolls ET, Rolls BJ, Rowe EA (1983c) Sensory-specific and motivation-specific satiety for the sight and taste of food and water in man. Physiol Behav 30:185–192CrossRefGoogle Scholar
  78. Rolls BJ, Van Duijvenvoorde PM, Rolls ET (1984) Pleasantness changes and food intake in a varied four-course meal. Appetite 5:337–348Google Scholar
  79. Rolls ET, Murzi E, Yaxley S, Thorpe SJ, Simpson SJ (1986) Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res 368:79–86CrossRefGoogle Scholar
  80. Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S (1988) The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol 397:1–12Google Scholar
  81. Rolls ET, Sienkiewicz ZJ, Yaxley S (1989) Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J NeuroSci 1:53–60CrossRefGoogle Scholar
  82. Rolls ET, Yaxley S, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 64:1055–1066Google Scholar
  83. Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524CrossRefGoogle Scholar
  84. Rolls ET, Critchley HD, Treves A (1996a) The representation of olfactory information in the primate orbitofrontal cortex. J Neurophysiol 75:1982–1996Google Scholar
  85. Rolls ET, Critchley HD, Mason R, Wakeman EA (1996b) Orbitofrontal cortex neurons: role in olfactory and visual association learning. J Neurophysiol 75:1970–1981Google Scholar
  86. Rolls ET, Critchley H, Wakeman EA, Mason R (1996c) Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5′-monophosphate. Physiol Behav 59:991–1000CrossRefGoogle Scholar
  87. Rolls ET, Treves A, Tovee MJ (1997a) The representational capacity of the distributed encoding of information provided by populations of neurons in the primate temporal visual cortex. Exp Brain Res 114:177–185CrossRefGoogle Scholar
  88. Rolls ET, Treves A, Tovee MJ, Panzeri S (1997b) Information in the neuronal representation of individual stimuli in the primate temporal visual cortex. J Comput Neurosci 4:309–333CrossRefGoogle Scholar
  89. Rolls ET, Critchley HD, Browning A, Hernadi I (1998) The neurophysiology of taste and olfaction in primates, and umami flavor. Ann N Y Acad Sci 855:426–437CrossRefGoogle Scholar
  90. Rolls ET, Critchley HD, Browning AS, Hernadi A, Lenard L (1999) Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J Neurosci 19:1532–1540Google Scholar
  91. Rolls ET, Verhagen JV, Kadohisa M (2003a) Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness and capsaicin. J Neurophysiol 90:3711–3724CrossRefGoogle Scholar
  92. Rolls ET, Kringelbach ML, de Araujo IET (2003b) Different representations of pleasant and unpleasant odors in the human brain. Eur J NeuroSci 18:695–703CrossRefGoogle Scholar
  93. Rolls ET, Critchley HD, Browning AS, Inoue K (2006) Face-selective and auditory neurons in the primate orbitofrontal cortex. Exp Brain Res 170:74–87CrossRefGoogle Scholar
  94. Rolls ET, Grabenhorst F, Margot C, da Silva MAAP, Velazco MI (2008) Selective attention to affective value alters how the brain processes olfactory stimuli. J Cogn Neurosci 20:1815–1826CrossRefGoogle Scholar
  95. Rolls ET, Grabenhorst F, Parris BA (2009a) Neural systems underlying decisions about affective odors. J Cogn Neurosci (in press)Google Scholar
  96. Rolls ET, Grabenhorst F, Franco L (2009b) Prediction of subjective affective state from brain activations. J Neurophysiol 101:1294–1308CrossRefGoogle Scholar
  97. Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET (1985) Gustatory responses in the nucleus tractus solitarius of the alert cynomolgus monkey. Chem Senses 10:441Google Scholar
  98. Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET (1986) Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 56:876–890Google Scholar
  99. Shannon CE (1948) A mathematical theory of communication. ATT Bell Lab Tech J 27:379–423Google Scholar
  100. Simmons WK, Martin A, Barsalou LW (2005) Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex 15:1602–1608CrossRefGoogle Scholar
  101. Small DM, Prescott J (2005) Odor/taste integration and the perception of flavor. Exp Brain Res 166:345–357CrossRefGoogle Scholar
  102. Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701–711CrossRefGoogle Scholar
  103. Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903CrossRefGoogle Scholar
  104. Smeets PA, de Graaf C, Stafleu A, van Osch MJ, Nievelstein RA, van der Grond J (2006) Effect of satiety on brain activation during chocolate tasting in men and women. Am J Clin Nutr 83:1297–1305Google Scholar
  105. Smith DV, Travers JB (1979) A metric for the breadth of tuning of gustatory neurons. Chem Senses 4:215–219CrossRefGoogle Scholar
  106. Sobel N, Prabkakaran V, Zhao Z, Desmond JE, Glover GH, Sullivan EV, Gabrieli JDE (2000) Time course of odorant-induced activation in the human primary olfactory cortex. J Neurophysiol 83:537–551Google Scholar
  107. Thorpe SJ, Rolls ET, Maddison S (1983) Neuronal activity in the orbitofrontal cortex of the behaving monkey. Exp Brain Res 49:93–115CrossRefGoogle Scholar
  108. Tovee MJ, Rolls ET, Treves A, Bellis RP (1993) Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol 70:640–654Google Scholar
  109. Treves A (1990) Graded-response neurons and information encodings in autoassociative memories. Phys Rev A 42:2418–2430CrossRefGoogle Scholar
  110. Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2:371–397CrossRefGoogle Scholar
  111. Treves A, Rolls ET (1994) A computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391CrossRefGoogle Scholar
  112. Uher R, Treasure J, Heining M, Brammer MJ, Campbell IC (2006) Cerebral processing of food-related stimuli: effects of fasting and gender. Behav Brain Res 169:111–119CrossRefGoogle Scholar
  113. Veldhuizen MG, Bender G, Constable RT, Small DM (2007) Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Senses 32:569–581CrossRefGoogle Scholar
  114. Verhagen JV (2007) The neurocognitive bases of human multimodal food perception: consciousness. Brain Res Rev 53:271–286CrossRefGoogle Scholar
  115. Verhagen JV, Engelen L (2006) The neurocognitive bases of human multimodal food perception: sensory integration. Neurosci Biobehav Rev 30:613–650CrossRefGoogle Scholar
  116. Verhagen JV, Rolls ET, Kadohisa M (2003) Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol 90:1514–1525CrossRefGoogle Scholar
  117. Verhagen JV, Kadohisa M, Rolls ET (2004) The primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature and taste of foods. J Neurophysiol 92:1685–1699CrossRefGoogle Scholar
  118. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, Zhu W, Wong CT, Pappas NR, Geliebter A, Fowler JS (2004) Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage 21:1790–1797CrossRefGoogle Scholar
  119. Yaxley S, Rolls ET, Sienkiewicz ZJ (1988) The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav 42:223–229CrossRefGoogle Scholar
  120. Yaxley S, Rolls ET, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol 63:689–700Google Scholar
  121. Zald DH, Pardo JV (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci USA 94:4119–4124CrossRefGoogle Scholar
  122. Zald DH, Rauch SL (eds) (2006) The orbitofrontal cortex. Oxford University Press, OxfordGoogle Scholar
  123. Zald DH, Lee JT, Fluegel KW, Pardo JV (1998) Aversive gustatory stimulation activates limbic circuits in humans. Brain 121:1143–1154CrossRefGoogle Scholar
  124. Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E (1992) Functional localization of human olfactory cortex. Nature 360:339–340CrossRefGoogle Scholar
  125. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266CrossRefGoogle Scholar
  126. Zou Z, Buck LB (2006) Combinatorial effects of odorant mixes in olfactory cortex. Science 311:1477–1481CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Edmund T. Rolls
    • 1
    • 2
  • Hugo D. Critchley
    • 1
    • 3
  • Justus V. Verhagen
    • 1
    • 4
  • Mikiko Kadohisa
    • 1
  1. 1.Department of Experimental PsychologyUniversity of OxfordOxfordUK
  2. 2.Oxford Centre for Computational NeuroscienceOxfordUK
  3. 3.Department of Psychiatry, Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
  4. 4.The John B. Pierce LaboratoryNew HavenUSA

Personalised recommendations