Chemosensory Perception

, Volume 1, Issue 2, pp 95–102 | Cite as

Multisensory Processing of Gustatory Stimuli

  • S. A. SimonEmail author
  • I. E. de Araujo
  • J. R. Stapleton
  • M. A. L. Nicolelis


The brain’s processing of gustatory stimuli is inherently multimodal, since at approximately the same time that intraoral stimuli activate receptors on taste cells, somatosensory information is concurrently conveyed to the central nervous system. We first present evidence that throughout the oral cavity, often a single chemical stimulus will concomitantly activate different receptors expressed on taste cells and somatosensory nerve terminals. We then argue that gustatory perception is intrinsically linked to concurrent somatosensory processing. Finally, we review evidence showing that central gustatory pathways are sites where multisensory integration occurs, with particular emphasis on somatosensory responses in the gustatory cortex.


Gustation Somatosensation Trigeminal System Sodium Chloride Nicotine Multisensory Integration Fixed Ratio Schedule Licking Generalized Linear Model 



We thank Professor Alan Spector for clarifying some points regarding the ingestion of NaCl. This study was supported in part by NIH grant DC-01065 and grants from Philip Morris USA and Philip Morris International.


  1. Boucher Y, Simons CT, Faurion A, Azerad J, Carstens E (2003a) Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res 973:265–274CrossRefGoogle Scholar
  2. Boucher Y, Simons CT, Faurion A, Azerad J, Carstens E (2003b) Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res 973:265–274CrossRefGoogle Scholar
  3. Breslin PA, Huang L (2006) Human taste: peripheral anatomy, taste transduction, and coding. Adv Otorhinolaryngol 63:152–190Google Scholar
  4. Burnette RR (1984) A Monte-Carlo model for the passive diffusion of drugs across the stratum corneum. Int J Pharm 22:89–97CrossRefGoogle Scholar
  5. Carstens E, Kuenzler N, Handwerker KO (1998) Activation of neurons in rat trigeminal subnucleus caudalis by different irritant chemicals applied to the oral or ocular mucosa. J Neurophysiol 80:465–492Google Scholar
  6. Carstens E, Albin KC, Simons CT, Carstens MI (2007) Time course of self-desensitization of oral irritation by nicotine and capsaicin. Chem Senses 32:811–816CrossRefGoogle Scholar
  7. Cerf-Ducastel B, van de Moortele PF, MacLeod P, Le Bihan D, Faurion A (2001) Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic image study. Chem Senses 26:371–383CrossRefGoogle Scholar
  8. Chrandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zucker CS, Ryba NJP (2000) T2Rs function as bitter taste receptors. Cell 100:703–711CrossRefGoogle Scholar
  9. Cliff MA, Green BG (1996) Sensitization and desensitization to capsaicin and menthol in the oral cavity: interactions and individual differences. Physiol Behav 59:487–494CrossRefGoogle Scholar
  10. Costa RM, Liu L, Nicolelis MAL, Simon SA (2004) Gustatory effects of capsaicin that are independent of TRPV1 receptors. Chem Senses 30:i198–i200CrossRefGoogle Scholar
  11. Dahl M, Erickson RP, Simon SA (1997) Neural responses to bitter compounds in the rat. Brain Res 756:22–34CrossRefGoogle Scholar
  12. de Araujo IET, Kringelbach ML, Rolls ET, McGlone F (2003) Human cortical responses to water in the mouth and the effects of thirst. J Neurophysiol 90:1865–1876CrossRefGoogle Scholar
  13. Fregly MJ (1996) On the spontaneous intake of NaCl solution by dogs. In: Kare MR, Fregly MJ, Bernard RA (eds) Biological and behavioral aspects of salt intake. Academic, New York, pp 55–68Google Scholar
  14. Fregly MJ, Rowland NE (1992) Comparison of preference thresholds for NaCl solution in rats of the Sprague–Dawley and Long–Evans strains. Physiol Behav 51:915–918CrossRefGoogle Scholar
  15. Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285CrossRefGoogle Scholar
  16. Green BG, Gelhard B (1989) Salt as an oral irritant. Chem Senses 14:259–271CrossRefGoogle Scholar
  17. Halpern BP, Tapper DN (1971) Taste stimuli: quality coding time. Science 171:1256–1258CrossRefGoogle Scholar
  18. Hanamori T, Kunitake T, Kato K, Kannan H (1997) Convergence of afferent inputs from the chorda tympani, lingual–tonsillar and pharyngeal branches of the glossopharyngeal nerve, and superior laryngeal nerve on the neurons in the insular cortex in rats. Brain Res 763:267–270CrossRefGoogle Scholar
  19. Hanamori T, Kunitake T, Kato K, Kannan H (1998) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79:2535–2545Google Scholar
  20. Holzer P (1988) Local effector functions of capsaicin-sensitive nerve endings: involvement of tachykinins. Neuroscience 24:739–768CrossRefGoogle Scholar
  21. Kadohisa M, Rolls ET, Verhagen JV (2004) Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience 127:207–221CrossRefGoogle Scholar
  22. Kadohisa M, Verhagen JV, Rolls ET (2005) The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience 132:33–48CrossRefGoogle Scholar
  23. Katz DB, Simon SA, Nicolelis MAL (2001) Dynamic and multimodal response of gustatory cortical neurons. J Neurosci 21:4478–4489Google Scholar
  24. Kawamura Y, Okamoto J, Funakoshi M (1968) A role of oral afferents in aversion to taste solutions. Physiol Behav 3:537–542CrossRefGoogle Scholar
  25. Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Stein BE (2005) On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp Brain Res 166:289–297CrossRefGoogle Scholar
  26. Lemon CH, Smith DV (2005) Neural representation of bitter taste in the nucleus of the solitary tract. J Neurophysiol 94:3719–3729CrossRefGoogle Scholar
  27. Lim J, Green BG (2007) The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses 32:31–39CrossRefGoogle Scholar
  28. Liu L, Simon SA (1996) Capsaicin and nicotine both activate a subset of rat trigeminal ganglion neurons. Am J Physiol 270(Pt 1):C1807–C1814Google Scholar
  29. Liu L, Simon SA (2000) Capsaicin, acid and heat evoked currents in rat trigeminal ganglion neurons: evidence for functional VR1 receptors. Physiol Behav 69:363–378CrossRefGoogle Scholar
  30. Liu L, Chang G-Q, Jiao Y, Simon SA (1998) Neuronal nicotinic acetylcholine receptors in rat trigeminal ganglia. Brain Res 809:238–245CrossRefGoogle Scholar
  31. Liu L, Zhu W, Zhang ZS, Yang T, Grant A, Oxford G, Simon SA (2004) Nicotine inhibits voltage-dependent sodium channels and sensitizes vanilloid receptors. J Neurophysiol 91:1482–1491CrossRefGoogle Scholar
  32. Lundbaek JA, Birn P, Tape SE, Toombes GES, Sogaard R, Koeppe RE II, Gruner SM, Hansen AJ, Andersen OS (2005) Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. Mol Pharmacol 68:680–689Google Scholar
  33. Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, Alam RI, Russell OF, Malik SA, Bigbee JW, DeSimone JA (2004) The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol (Lond) 558:147–159CrossRefGoogle Scholar
  34. Lyall V, Heck GL, Phan TH, Mummalaneni S, Malik SA, Vinnikova AK, DeSimone JA (2005) Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. ii. Effect on chorda tympani salt responses. J Gen Physiol 125:587–600CrossRefGoogle Scholar
  35. Lyall V, Phan TH, Mummalaneni S, Mansouri M, Heck GL, Kobal G, DeSimone JA (2007) Effect of nicotine on chorda tympani responses to salty and sour stimuli. J Neurophysiol 98:1662–1674CrossRefGoogle Scholar
  36. Mistretta CM (1971) Permeability of tongue epithelium and its relation to taste. Am J Physiol 220:1162–1167Google Scholar
  37. Norgren R (1995) Gustatory system. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 751–771Google Scholar
  38. Ogawa H, Ifuku H, Nakamura T, Hirata S (2005) Possible changes in information from the primary to higher-order gustatory cortices, studied by recording neural activities during a taste discrimination GO/NOGO task in monkeys. Chem Senses 30:78–79CrossRefGoogle Scholar
  39. Okuni Y (1977) Response of chorda tympani fibers of the rat to pungent spices and irritants in pungent spices. Shikwa Gakuho 77:1323–1349Google Scholar
  40. Pfaffmann C, Bartoshuk L, McBurney DH (1971) Taste psychophysics. In: Beidler LM (ed) Handbook of sensory physiology. Springer, New York, pp 76–98Google Scholar
  41. Riera CE, Vogel H, Simon SA, Coutre J1 (2007) Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol 293:R626–R634Google Scholar
  42. Rolls ET, Baylis LL (1994) Gustatory, olfactory and visual convergence within the primate orbitofrontal cortex. J Neurosci 14:5437–5442Google Scholar
  43. Ruiz C, Gutknecht S, Delay E, Kinnamon S (2006) Detection of NaCl and KCl in TRPV1 knockout mice. Chem Senses 31:813–820CrossRefGoogle Scholar
  44. Scott TR, Mark GP (1987) The taste system encodes toxicity. Brain Res 414:197–203CrossRefGoogle Scholar
  45. Scott TR, Plata-Salaman CR (2003) Taste in the monkey cortex. Physiol Behav 67:489–511CrossRefGoogle Scholar
  46. Shepherd GM (2006) Smell images and the flavour system in the human brain. Nature 444:316–321CrossRefGoogle Scholar
  47. Simon SA, Liu L, Erickson RP (2003) Neuropeptides modulate rat chorda tympani responses. Am J Physiol Regul Integr Comp Physiol 284:R1494–R1505Google Scholar
  48. Simon SA, de Araujo IE, Gutierrez R, Nicolelis MAL (2006) The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 7:890–901CrossRefGoogle Scholar
  49. Simons CT, Sudo S, Sudo M, Carstens E (2003) Mecamylamine reduces nicotine cross-desensitization of trigeminal caudalis neuronal responses to oral chemical irritation. Brain Res 991:249–253CrossRefGoogle Scholar
  50. Simons CT, Boucher Y, Carstens MI, Carstens E (2006) Nicotine suppression of gustatory responses of neurons in the nucleus of the solitary tract. J Neurophysiol 96:1877–1886CrossRefGoogle Scholar
  51. Squier CA (1973) The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res 43:160–177CrossRefGoogle Scholar
  52. Squier CA, Johnson NW (1975) Permeability of oral muscosa. Br Med Bull 31:169–175Google Scholar
  53. Stanford TR, Stein BE (2007) Superadditivity in multisensory integration: putting the computation in context. Neuroreport 18:787–792CrossRefGoogle Scholar
  54. Stapleton JA, Lavine M, Wolpert R, Nicolelis MAL, Simon SA (2006) Rapid taste responses in the gustatory cortex during licking. J Neurosci 26:4126–4138CrossRefGoogle Scholar
  55. Stapleton JA, Lavine M, Nicolelis MAL, Simon SA (2007) Ensembles of gustatory cortical neurons anticipate and discriminate between tastants in a single lick. Front Neurosci 1:161–174CrossRefGoogle Scholar
  56. Treesukosol Y, Lyall V, Heck GL, DeSimone JA, Spector AC (2007) A psychophysical and electrophysiological analysis of salt taste in Trpv1 null mice. Am J Physiol Regul Integr Comp Physiol 292:R1799–R1809Google Scholar
  57. Wang Y, Erickson RP, Simon SA (1993) Selectivity of lingual nerve fibers to chemical stimuli. J Gen Physiol 101:843–866CrossRefGoogle Scholar
  58. Wang Y, Erickson RE, Simon SA (1995) Modulation of chorda tympani nerve activity by lingual nerve stimulation. J Neurophysiol 73:1468–1483Google Scholar
  59. Yamamoto Y, Yuyama N, Kato T, Kawamura Y (1984) Gustatory responses of cortical neurons in the rats. l. Response characteristics. J Neurophysiol 51:616–635Google Scholar
  60. Yamamoto T, Yuyama N, Kato K, Kawamura Y (1988) Gustatory responses of cortical neurons in rats. II. information processing of taste quality. J Neurophysiol 53:1356–1369Google Scholar
  61. Yamamoto T, Yuyama N, Kato T, Kawamura Y (1989) Gustatory responses of cortical neurons in rats. III. Neural and behavioral measures compared. J Neurophysiol 53:1370–1386Google Scholar
  62. Yaxley S, Rolls ET, Sienkiewicz (1988) The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol & Behav 42:223–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. A. Simon
    • 1
    • 2
    • 3
    Email author
  • I. E. de Araujo
    • 6
  • J. R. Stapleton
    • 1
  • M. A. L. Nicolelis
    • 1
    • 3
    • 4
    • 5
    • 7
  1. 1.Department of NeurobiologyDuke UniversityDurhamUSA
  2. 2.Department of AnesthesiologyDuke UniversityDurhamUSA
  3. 3.Center of NeuroengineeringDuke UniversityDurhamUSA
  4. 4.Psychology and NeuroscienceDuke UniversityDurhamUSA
  5. 5.Biomedical EngineeringDuke UniversityDurhamUSA
  6. 6.J.B. Pierce LaboratoryNew HavenUSA
  7. 7.Edmond and Lily Safra International Institute of Neuroscience of NatalNatalBrazil

Personalised recommendations