Chemosensory Perception

, Volume 1, Issue 1, pp 48–57 | Cite as

Transdisciplinary Perspectives on Sweetness

  • John E. HayesEmail author


Sweetness is classically considered a single perceptual experience. However, diverse compounds can elicit this sensation, suggesting the existence of multiple pathways toward this end. This paper presents an overview of chemical theories of sweetness, reviews the phylogenetic and behavioral evidence for multiple pathways, and presents a summary of recent molecular advances regarding the sweet receptor. Potential sites for signal integration are discussed, and implications for nutritionists and food scientists are presented.


Taste Sweeteners Individual Differences Receptors G-Protein-Coupled Carbohydrates Structure–Activity Relationship 



The author wishes to thank Valerie B. Duffy, Linda M. Bartoshuk, Terry E. Acree, and the anonymous reviewers for their thoughtful comments on earlier drafts, and the Pangborn Sensory Science Scholarship Fund for their generous financial support.


  1. Acree TE (1970) A molecular theory of sweet taste—amino acids and peptides. Carbohydrate/Oilseeds Division of the American Association of Cereal Chemists. Excelsior Springs, MO, USAGoogle Scholar
  2. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100(6):693–702Google Scholar
  3. Amrein H, Bray S (2003) Bitter-sweet solution in taste transduction. Cell 112(3):283–284Google Scholar
  4. Ayya N, Lawless HT (1992) Quantitative and qualitative evaluation of high-intensity sweeteners and sweetener mixtures. Chem Senses 17(3):245–259Google Scholar
  5. Bachmanov AA (2005) Genetic approach to characterize interaction of sweeteners with sweet taste receptors in vivo. Chem Senses 30(Suppl 1):i82–i83Google Scholar
  6. Bachmanov AA, Tordoff MG, Beauchamp GK (2001) Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem Senses 26(7):905–913Google Scholar
  7. Bachmanov AA, Reed DR, Li X, Beauchamp GK (2002) Genetics of sweet taste preferences. Pure Appl Chem 74(7):1135–1140Google Scholar
  8. Bakal AI, Cumberland Packing Corp., assignee (1984) Sweetening foods with non-caloric di- or trisaccharides having L-hexose component. Brooklyn NY patent 426-658-000 127-030-000 424-361-000 426-804-000 536-001-100Google Scholar
  9. Bartoshuk LM, Dateo GP, Vanderbelt DJ, Buttrick RL, Long L (1969) Effect of Gymnema sylvestre and Synsepalum dulcificum on taste in man. In: Pfaffmann (ed) COlfaction and taste. Rockefeller University Press, New York, pp 436–444Google Scholar
  10. Bartoshuk LM, Gentile RL, Molkowitz HR, Meiselman HL (1974) Sweet taste induced by miracle fruit (Synsepalum dulcificum). Physiol Behav 12(3):449–456Google Scholar
  11. Bartoshuk LM, Fast K, Snyder DJ (2005) Differences in our sensory worlds: invalid comparisons with labeled scales. Curr Dir Psychol Sci 14(3):122–125Google Scholar
  12. Bassoli A, Drew MGB, Merlini D, Morini G (2002a) General pseudoreceptor model for sweet compounds: a semiquantitative prediction of binding affinity for sweet-tasting molecules. J Med Chem 45(20):4402–4409Google Scholar
  13. Bassoli A, Merlini L, Morini G (2002b) Isovanillyl sweeteners. From molecules to receptors. Pure Appl Chem 74(7):1181–1187Google Scholar
  14. Bernhardt SJ, Naim M, Zehavi U, Lindemann B (1996) Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J Physiol 490(Pt 2):325–336Google Scholar
  15. Birch GG (1987) Chemical aspects of sweetness. In: Dobbing J, International Life Sciences Institute (ed) Sweetness, Springer New York, pp 3–13Google Scholar
  16. Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton-Century, New YorkGoogle Scholar
  17. Brand JG, Feigin AM (1996) Biochemistry of sweet taste transduction. Food Chem 56(3):199–207Google Scholar
  18. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79(4):537–543Google Scholar
  19. Breslin PA, Kemp S, Beauchamp GK (1994) Single sweetness signal. Nature 369(6480):447–448Google Scholar
  20. Caicedo A, Kim KN, Roper SD (2002) Individual mouse taste cells respond to multiple chemical stimuli. J Physiol 544(Pt 2):501–509Google Scholar
  21. Cardello HM, Da Silva MA, Damasio MH (1999) Measurement of the relative sweetness of stevia extract, aspartame and cyclamate/saccharin blend as compared to sucrose at different concentrations. Plant Foods Hum Nutr 54(2):119–130Google Scholar
  22. Cohn G (1914) Die Organischen Geschmackstoffe. F. Siemenroth, BerlinGoogle Scholar
  23. Cruz A, Green BG (2000) Thermal stimulation of taste. Nature 403(6772) 889–892Google Scholar
  24. Danilova V, Danilov Y, Roberts T, Tinti JM, Nofre C, Hellekant G (2002) Sense of taste in a new world monkey, the common marmoset: recordings from the chorda tympani and glossopharyngeal nerves. J Neurophysiol 88(2):579–594Google Scholar
  25. Danilova V, Hellekant G (2004) Sense of taste in a New World monkey, the common marmoset. II. Link between behavior and nerve activity. J Neurophysiol 92(2):1067–1076Google Scholar
  26. De Francisco JC, Dess NK (1998) Aspartame consumption in rats selectively bred for high versus low saccharin intake. Physiol Behav 65(2):393–396Google Scholar
  27. Delwiche J (1996) Are there ‘basic’ tastes? Trends Food Sci Technol 7(12):411–415Google Scholar
  28. DiMeglio DP, Mattes RD (2000) Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord 24(6):794–800Google Scholar
  29. Duffy VB, Sigmand-Grant M (2004) Position of the American Dietetic Association: use of nutritive and nonnutritive sweeteners. J Am Diet Assoc 104(2):255–275Google Scholar
  30. Duffy VB, Hayes JE, Dinehart ME (2006) Genetic differences in sweet taste perception. In: Spillane WJ (ed) Optimising the sweet taste in foods. Woodhead, Cambridge, pp 30–53Google Scholar
  31. Eggers SC, Acree TE, Shallenberger RS (2000) Sweetness chemoreception theory and sweetness transduction. Food Chem 68(1):45–49Google Scholar
  32. Ennis DM (2002) Molecular mixture models: connect molecular events to perception. In: Given P, Paredes D, American Chemical Society, Division of Agricultural and Food Chemistry (eds) American Chemical Society. Meeting (219th: 2000: San Francisco Calif.) Chemistry of taste: mechanisms, behavior, and mimics. American Chemical Society, Washington, DC, pp 32–38Google Scholar
  33. Erickson RP (1977) The role of ‘primaries’ in taste research. In: Le Magnen J, Mac Leod P (eds) Olfaction and taste VI: proceedings of the sixth international symposium held at Gif-sur-Yvette, Paris, France, 15–17th July, 1977 Information RetrievalWashington, DC, USA, pp vii, 527Google Scholar
  34. Erickson RP (2000) The evolution of neural coding ideas in the chemical senses. Physiol Behav 69(1–2):3–13Google Scholar
  35. Eylam S, Kennedy LM (1998) Identification and characterization of human fructose or glucose taste variants with hypogeusia for one monosaccharide but not for the other. Ann N Y Acad Sci 855:170–174Google Scholar
  36. Faurion A (1993) The physiology of sweet taste and molecular receptors. In: Mathlouthi M, Kanters JA, Birch GG (eds) Sweet-taste chemoreception. Elsevier Applied Science, New York, pp 291–315Google Scholar
  37. Fischer E (1894) Einsfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993Google Scholar
  38. Fontvieille AM, Faurion A, Helal I, Rizkalla SW, Falgon S, Letanoux M, Tchobroutsky G, Slama G (1989) Relative sweetness of fructose compared with sucrose in healthy and diabetic subjects. Diabetes Care 12(7):481–486Google Scholar
  39. Freeman KB, Riley AL (2005) Conditioned taste aversion: an annotated bibliography.
  40. Froloff N, Lloret E, Martinez JM, Faurion A (1998) Cross-adaptation and molecular modeling study of receptor mechanisms common to four taste stimuli in humans. Chem Senses 23(2):197–206Google Scholar
  41. Gardner BJ (1984) Investigation of sweet taste mechanism by taste interactions. Purdue University, West Lafayette, INGoogle Scholar
  42. Gent JF, Hettinger TP, Frank ME, Marks LE (1999) Taste confusions following gymnemic acid rinse. Chem Senses 24(4):393–403Google Scholar
  43. Glaser D (1999) The evolution of taste perception. In: Corti A (ed) Low-calorie sweeteners: present and future. Karger, Basel, pp 18–38Google Scholar
  44. Glaser D (2002) Specialization and phyletic trends of sweetness reception in animals. Pure Appl Chem 74(7):1153–1158Google Scholar
  45. Glaser D, Tinti JM, Nofre C (1995) Evolution of the sweetness receptor in primates. I. Why does alitame taste sweet in all prosimians and simians, and aspartame only in Old World simians? Chem Senses 20(5):573–584Google Scholar
  46. Glaser D, Tinti JM, Nofre C (1996) Gustatory responses of non-human primates to dipeptide derivatives or analogues, sweet in man. Food Chem 56(3)313–321Google Scholar
  47. Glendinning JI, Hills TT (1997) Electrophysiological evidence for two transduction pathways within a bitter-sensitive taste receptor. J Neurophysiol 78(2):734–745Google Scholar
  48. Goodman M, Del Valle JR, Amino Y, Benedetti E (2002) Molecular basis of sweet taste in dipeptide taste ligands. Pure Appl Chem 74(7):1109–1116Google Scholar
  49. Green BG, George P (2004) ‘Thermal taste’ predicts higher responsiveness to chemical taste and flavor. Chem Senses 29(7):617–628Google Scholar
  50. Halpern BP (1997) Psychophysics of taste. In: Beauchamp GK, Bartoshuk LM (eds) Tasting and smelling. Handbook of perception and cognition. Academic, San Diego, CA, pp 77–123Google Scholar
  51. Halpern BP (2002) Taste. In: Stevens SS, Pashler HE (eds) Steven’s handbook of experimental psychology, vol. 1. Sensation and perception, 3rd edn. Wiley, New York, pp 653–690Google Scholar
  52. Hayes JE, Duffy VB (2007) Revisiting sugar-fat mixtures: sweetness and creaminess vary with phenotypic markers of oral sensation. Chem Senses 32(3):225–236Google Scholar
  53. Hellekant G, Danilova V (1996) Species differences toward sweeteners. Food Chem 56(3):323–328Google Scholar
  54. Hiji T (1975) Selective elimination of taste responses to sugars by proteolytic enzymes. Nature 256(5516):427–429Google Scholar
  55. Hyvonen L, Kurkela R, Koivistoinen P, Ratilainen A (1978) Fructose-saccharin and xylitol-saccharin synergism. J Food Sci 43:251–254Google Scholar
  56. Inoue M, Reed DR, Li X, Tordoff MG, Beauchamp GK, Bachmanov AA (2004) Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice. J Neurosci 24(9):2296–303Google Scholar
  57. Institute of Medicine of the National Academy of Sciences (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academy of Sciences, Washington, DC, USAGoogle Scholar
  58. Jakinovich W Jr (1981) Stimulation of the gerbil’s gustatory receptors by artificial sweeteners. Brain Res 210(1–2):69–81Google Scholar
  59. Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M (2005a) Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 280(15):15238–15246Google Scholar
  60. Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Max M, Margolskee RF (2005b) Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem 280(40):34296–34305Google Scholar
  61. Johnson C, Birch GG, MacDougall DB (1994) The effect of the sweetness inhibitor 2(-4-methoxyphenoxy)propanoic acid (sodium salt) (Na-PMP) on the taste of bitter-sweet stimuli. Chem Senses 19(4):349–358Google Scholar
  62. Keast RSJ, Breslin PAS (2002) Cross-adaptation and bitterness inhibition of L-tryptophan, L-phenylalanine and urea: Further support for shared peripheral physiology. Chem Senses 27(2):123–131Google Scholar
  63. Keast RS, Canty TM, Breslin PA (2004) Oral zinc sulfate solutions inhibit sweet taste perception. Chem Senses 29(6):513–521Google Scholar
  64. Kennedy LM, Eylam S, Poskanzer JE, Saikku AR (1997) Genetic analyses of sweet taste transduction. Food Chem 60(3):311–321Google Scholar
  65. Keskitalo K, Knaapila A, Kallela M, Palotie A, Wessman M, Sammalisto S, Peltonen L, Tuorila H, Perola M (2007) Sweet taste preferences are partly genetically determined: identification of a trait locus on chromosome 16. Am J Clin Nutr 86(1):55–63Google Scholar
  66. Kier LB (1972) A molecular theory of sweet taste. J Pharm Sci 61(9):1394–1397Google Scholar
  67. Kurihara Y, Nirasawa S (1994) Sweet, antisweet and sweetness-inducing substances. Trends in Food Sci Technol 5:37–42Google Scholar
  68. Laffort P, Walsh RM, Spillane WJ (2002) Application of the U and gamma’ models in binary sweet taste mixtures. Chem Senses 27(6):511–520Google Scholar
  69. Lancet D, Ben-Arie N (1991) Sweet taste transduction: a molecular-biological analysis. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, USAx, 333Google Scholar
  70. Lawless HT (1979) Evidence for neural inhibition in bittersweet taste mixtures. J Comp Physiol Psychol 93(3):538–547Google Scholar
  71. Lawless HT (1998) Theoretical note: tests of synergy in sweetener mixtures. Chem Senses 23(4):447–451CrossRefGoogle Scholar
  72. Lawless HT, Stevens DA (1983) Cross adaptation of sucrose and intensive sweeteners. Chem Senses 7(3–4):309–315Google Scholar
  73. Levin GV; Biospherics Incorporated, assignee (1981) Sweetened edible formulations. Rockville MD patent 426-658-000 426-804-000 424-361-000Google Scholar
  74. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99(7):4692–4696Google Scholar
  75. Lichtenthaler FW, Immel S (1993) Sucrose, sucralose, and fructose: correlations between hydrophobicity potential profiles and AH-B-X assignments. In: Mathlouthi M, Kanters JA, Birch GG (eds) Sweet-taste chemoreception. Elsevier Applied Science, New York, pp 21–53Google Scholar
  76. Lichtenthaler FW, Immel S (1995) Computer-simulation of chemical and biological properties of sucrose, the cyclodextrins and amylose. Int Sugar J 97(1153):13–22Google Scholar
  77. Lichtenthaler FW, Immel S, Kreis U (1991) Evolution of the structural representation of sucrose. Starch/Starke 43:121–132Google Scholar
  78. Lindley MG (1991) Phenoxyalkanoic acid sweetness inhibitors. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, pp 251–260Google Scholar
  79. Lindley M (2006) Taste-ingredient interactions modulating sweetness. In: Spillane WJ (ed) Optimising the sweet taste in foods. Woodhead, Cambridge, UKGoogle Scholar
  80. Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277(1):1–4Google Scholar
  81. Mathlouthi M, Angiboust JF, Kacurakova M, Hooft RWW, Kanters JA, Kroon J (1994) Structural studies on sweet taste inhibitors - lactisole, Dl-2(4-Methoxyphenoxy)-Propanoic acid. J Mol Struct 326:25–34Google Scholar
  82. Mattes R (2005) Soup and satiety. Physiol Behav 83(5):739–747Google Scholar
  83. McBurney DH, Smith DV, Shick TR (1972) Gustatory cross adaptation: sourness and bitterness. Percept Psychophys 11(3):228–232Google Scholar
  84. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390Google Scholar
  85. Nielsen SJ, Popkin BM (2004) Changes in beverage intake between 1977 and 2001. Am J Prev Med 27(3):205–210Google Scholar
  86. Nofre C, Glaser D, Tinti JM, Wanner M (2002) Gustatory responses of pigs to sixty compounds tasting sweet to humans. J Anim Physiol Anim Nutr (Berl) 86(3–4):90–96Google Scholar
  87. Nofre C, Tinti JM (1983) US Patent No. 4645678Google Scholar
  88. Nofre C, Tinti JM (1987) US Patent No. 4921939Google Scholar
  89. Nofre C, Tinti JM (1996) Sweetness reception in man: the multipoint attachment theory. Food Chem 56(3):263–274Google Scholar
  90. Nofre C, Tinti JM, Glaser D (1996) Evolution of the sweetness receptor in primates. II. Gustatory responses of non-human primates to nine compounds known to be sweet in man. Chem Senses 21(6):747–762Google Scholar
  91. Nowlis GH, Frank ME, Pfaffmann C (1980) Specificity of acquired aversions to taste qualities in hamsters and rats. J Comp Physiol Psychol 94(5):932–942Google Scholar
  92. Oertly E, Myers RG (1919) A new theory relating constitution to taste. J Am Chem Soc 41:855–867Google Scholar
  93. Pangborn RM (1970) Individual Variation in affective responses to taste stimuli. Psychon Sci 21(2):125–126Google Scholar
  94. Reed DR, Li S, Li X, Huang L, Tordoff MG, Starling-Roney R, Taniguchi K, West DB, Ohmen JD, Beauchamp GK et al (2004) Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains. J Neurosci 24(4):938–946Google Scholar
  95. Reed DR, Li X, Chen Z, Mascioli K, Bachmanov AA, Beauchamp GK, Tordoff MG, Max M, Margolskee R, Bartoshuk LM et al (2002) Alleles of the taste receptor gene TAS1R3 may influence the pleasantness of sucrosee and aspartame in human subjects. Obes Res 10(1):67Google Scholar
  96. Richter CP, Campbell KH (1939) Sucrose taste thresholds of rats and humans. Am J Physiol Legacy Content 128(2):291–297Google Scholar
  97. Roberts RM (1989) Serendipity: accidental discoveries in science. Wiley, New YorkGoogle Scholar
  98. Schifferstein HN (1996) An equiratio mixture model for non-additive components: a case study for aspartame/acesulfame-K mixtures. Chem Senses 21(1):1–11Google Scholar
  99. SchiffmanSS, EricksonRP1971A psychophysical model for gustatory qualityPhysiology and Behavior7617–633Google Scholar
  100. Schiffman SS, Cahn H, Lindley MG (1981) Multiple receptor sites mediate sweetness: evidence from cross adaptation. Pharmacol Biochem Behav 15(3):377–388Google Scholar
  101. Schiffman SS, Booth BJ, Carr BT, Losee ML, Sattely-Miller EA, Graham BG (1995) Investigation of synergism in binary mixtures of sweeteners. Brain Res Bull 38(2):105–120Google Scholar
  102. Schiffman SS, Booth BJ, Sattely-Miller EA, Graham BG, Gibes KM (1999) Selective inhibition of sweetness by the sodium salt of +/−2-(4- methoxyphenoxy)propanoic acid. Chem Senses 24(4):439–447Google Scholar
  103. Schiffman SS, Sattely-Miller EA, Graham BG, Booth BJ, Gibes KM (2000) Synergism among ternary mixtures of fourteen sweeteners. Chem Senses 25(2):131–140Google Scholar
  104. Sclafani A, Abrams M (1986) Rats show only a weak preference for the artificial sweetener aspartame. Physiol Behav 37(2):253–256Google Scholar
  105. Shallenberger RS (1997) Taste recognition chemistry. Pure Appl Chem 69(4):659–666Google Scholar
  106. Shallenberger RS, Acree TE (1967) Molecular theory of sweet taste. Nature 216(114):480–482Google Scholar
  107. Shallenberger RS, Acree TE, Lee CY (1969) Sweet taste of D and L-sugars and amino-acids and the steric nature of their chemo-receptor site. Nature 221(180):555–556Google Scholar
  108. Spadaccini R, Trabucco F, Saviano G, Picone D, Crescenzi O, Tancredi T, Temussi PA (2003) The mechanism of interaction of sweet proteins with the T1R2-T1R3 receptor: evidence from the solution structure of G16A-MNEI. J Mol Biol 328(3):683–692Google Scholar
  109. Stone H, Oliver SM (1969) Measurement of the relative sweetness of selected sweeteners and sweeteners mixtures. J Food Sci 34:215–222Google Scholar
  110. Tancredi T, Pastore A, Salvadori S, Esposito V, Temussi PA (2004) Interaction of sweet proteins with their receptor. A conformational study of peptides corresponding to loops of brazzein, monellin and thaumatin. Eur J Biochem 271(11):2231–2240Google Scholar
  111. Tinti J-M, Nofre C (1991a) Design of sweeteners: a rational approach. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, USA, pp 88–99Google Scholar
  112. Tinti J-M, Nofre C (1991b) Why does a sweetener taste sweet? A new model. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, USA, pp 209–213Google Scholar
  113. Tinti JM, Durozard D, Nofre C (1980) Sweet taste receptor: evidence of separate specific sites for COO- and NO2/CN groups in sweeteners. Naturwissenschaften 67(4)193–194Google Scholar
  114. van der Heijden A (1997) Historical overview an structure-activity relationships among sweeteners. Pure Appl Chem 69(4):667–674Google Scholar
  115. van der Wel H, Arvidson K (1978) Qualitative psychophysical studies on the gustatory effects of sweet tasting proteins thaumatin and monellin. Chem Senses and Flavour 3(3):291–297Google Scholar
  116. Walters DE, Orthoefer FT, DuBois GE, American Chemical Society (1991) Sweeteners: discovery, molecular design, and chemoreception, Division of Agricultural and Food Chemistry and American Chemical Society Meeting. American Chemical Society, Washington, DC, USAGoogle Scholar
  117. Witherly SA, Pangborn RM, Stern JS (1980) Gustatory responses and eating duration of obese and lean adults. Appetite 1:53–63Google Scholar
  118. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101(39):14258–14263Google Scholar
  119. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes. Different receptor cells sharing similar signaling pathways. Cell 112(3):293–301Google Scholar
  120. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115(3):255–266Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Center for Alcohol and Addictions Studies, Department of Community Health, The Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations