Dealing with spatial data pooled over time in statistical models

Original Paper


Recent developments in spatial econometrics have been devoted to spatio-temporal data and how spatial panel data structure should be modeled. Little effort has been devoted to the way one must deal with spatial data pooled over time. This paper presents the characteristics of spatial data pooled over time and proposes a simple way to take into account unidirectional temporal effect as well as multidirectional spatial effect in the estimation process. An empirical example, using data on 25,357 single family homes sold in Lucas County, OH (USA), between 1993 and 1998 (available in the MatLab library), is used to illustrate the potential of the approach proposed.


Spatio-temporal data Weights matrix Spatial econometrics 

JEL Classification

C21 C23 C51 C81 R15 


  1. Anselin, L.: Spatial econometrics in RSUE: retrospect and prospect. Reg. Sci. Urban Econ. 37, 450–456 (2007)CrossRefGoogle Scholar
  2. Anselin, L., Syabri, I., Kho, Y.: GeoDa: an introduction to spatial data analysis. Geogr. Anal. 38, 5–22 (2006)CrossRefGoogle Scholar
  3. Boots, B.N., Dufournaud, C.: A programming approach to minimizing and maximizing spatial autocorrelation statistics. Geogr. Anal. 26, 54–66 (1994)CrossRefGoogle Scholar
  4. Des Rosiers, F., Lagana, M., Theriault, M., Beaudoin, M.: Shopping centres and house values: an empirical investigation. J. Prop. Valuat. Invest. 14(4), 41–62 (1996)CrossRefGoogle Scholar
  5. Des Rosiers, F., Lagana, A., Thériault, M.: Size and proximity effects of primary schools on surronding house values. J. Prop. Res. 18(2), 1–20 (2001)Google Scholar
  6. Des Rosiers, F., Dubé, J., Thériault, M.: Do peer effects shape property values? J. Prop. Invest. Fin. 29(4/5), 510–528 (2011)CrossRefGoogle Scholar
  7. Dubé, J., Legros, D.: A spatio-temporal measure of spatial dependence: an example using real estate data. Pap. Reg. Sci. (2012, forthcoming)Google Scholar
  8. Dubé, J., Baumont, C., Legros, D.: Utilisation des matrices de pondérations en économétrie spatiale: Proposition dans un contexte spatio-temporel. Documents de travail du Laboratoire d’Économie et de Gestion (LEG), Université de Bourgogne, e2011-01 (2011a)Google Scholar
  9. Dubé, J., Des Rosiers, F., Thériault, M.: Impact de la segmentation spatiale sur le choix de la forme fonctionnelle pour la modélisation hédonique. Revue d’Economie Régionale et Urbaine 1, 9–37 (2011b)Google Scholar
  10. Dubé, J., Des Rosiers, F., Thériault, M., Dib, P.: Economic impact of a supply change in mass transit in urban areas: a Canadian example. Transport. Res. 45, 46–62 (2011c)Google Scholar
  11. Elhorst, J.P.: Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 26(3), 244–268 (2003)CrossRefGoogle Scholar
  12. Fingleton, B.: Spurious spatial regression: some Monte Carlo results with a spatial unit root and spatial cointegration. J. Reg. Sci. 39(1), 1–19 (1999)CrossRefGoogle Scholar
  13. Fingleton, B.: Spatial autoregression. Geogr. Anal. 41, 385–391 (2009)CrossRefGoogle Scholar
  14. Getis, A.: Spatial weights matrices. Geogr. Anal. 41, 404–410 (2009)CrossRefGoogle Scholar
  15. Getis, A., Aldstadt, J.: Constructing the spatial weights matrix using a local statistic. Geogr. Anal. 36, 90–104 (2004)CrossRefGoogle Scholar
  16. Griffith, D.A.: Modelling urban population density in a multi-centered city. J. Urban Econ. 9(3), 298–310 (1981)CrossRefGoogle Scholar
  17. Griffith, D.A.: Some guidelines for specifying the geographic weights matrix contained in spatial statistical modelschap. In: Pratical Handbook of Spatial Statistics, pp. 82–148. CRC Press, Boca Raton (1996)Google Scholar
  18. Hägerstrand, T.: What about people in regional science? Pap. Reg. Sci. Assoc. 24(1), 7–21 (1970)CrossRefGoogle Scholar
  19. Huang, B., Huang, W., Barry, M.: Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 24(3), 383–401 (2010)CrossRefGoogle Scholar
  20. Lee, L.F., Yu, J.: Spatial monstationarity and spurious regression: the case with row-normalized spatial weights matrix. Spatial Econ. Anal. 4 (2009, forthcoming)Google Scholar
  21. LeGallo, J.: Econométrie spatiale: l’autocorrélation spatiale dans les modèles de régression linéaire. Economie et Prévision 155, 139–157 (2002)Google Scholar
  22. Legendre, P.: Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993)CrossRefGoogle Scholar
  23. Lesage, J.P.: Spatial Econometrics. The Web Book of Regional Science, Regional Research Institute, West Virginia University, Morgantown (1999)Google Scholar
  24. Lesage, J.P., Pace, R.K.: Models for spatially dependent missing data. J. Real Estate Fin. Econ. 29, 233–254 (2004)CrossRefGoogle Scholar
  25. Lesage, J.P., Pace, K.R.: Introduction to Spatial Econometrics. Chapman and Hall/CRC, London (2009)CrossRefGoogle Scholar
  26. Monteiro, J.-A., Kukenova, M.: Spatial Dynamic Panel Model and System GMM: A Monte Carlo Investigation. IRENE Working Papers 09-01, IRENE Institute of Economic Research (2009)Google Scholar
  27. Nappi-Choulet, I., Maury, T.-P.: A spatiotemporal autoregressive price index for the Paris office property market. Real Estate Econ. 37(2), 305–340 (2009)CrossRefGoogle Scholar
  28. Nappi-Choulet, I., Maury, T.-P.: A spatial and temporal autoregressive local estimation for the Paris housing market. J. Reg. Sci. 51(4), 732–750 (2011)CrossRefGoogle Scholar
  29. Pace, K.R., Barry, R., Clapp, J.M., Rodriguez, M.: Spatiotemporal autoregressive models of neighborhood effects. J. Real Estate Fin. Econ. 17(1), 15–33 (1998)CrossRefGoogle Scholar
  30. Pace, K.R., Barry, R., Gilley, W.O., Sirmans, C.F.: A method for spatial–temporal forecasting with an application to real estate prices. Int. J. Forecast. 16, 229–246 (2000)CrossRefGoogle Scholar
  31. Parent, O., Lesage, J.P.: A Spatial Dynamic Panel Model with Random Effects Applied to Commuting Times. University of Cincinnati, Economics Working Papers Series 2010-01. University of Cincinnati, Department of Economics (2010)Google Scholar
  32. Parent, O., Lesage, J.P.: A space–time filter for panel data models containing random effects. Comput. Stat. Data Anal. 55(1), 475–490 (2011)CrossRefGoogle Scholar
  33. Rosen, S.: Hedonic prices and implicit markets: product differentiation in pure competition. J. Political Econ. 82(1), 34–55 (1974)CrossRefGoogle Scholar
  34. Smith, T.E., Wu, P.: A spatio-temporal model of housing prices based on individual sales transactions over time. J. Geogr. 11(4), 333–355 (2009)Google Scholar
  35. Sun, H., Tu, Y.: A spatio-temporal autoregressive model for multi-unit residential market analyis. J. Real Estate Fin. Econ. 31(2), 155–187 (2005)CrossRefGoogle Scholar
  36. Tobler, W.: A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46(2), 234–240 (1970)CrossRefGoogle Scholar
  37. Tu, Y., Yu, S.-M., Sun, H.: Transaction-based office price indexes: A spatiotemporal modeling approach. Real Estate Econ. 32, 297–328 (2004)Google Scholar
  38. Wooldridge, J.M.: Introductory econometrics: a modern approach. South-Western College Publishing, Cincinnati (2000)Google Scholar
  39. Wooldridge, J.M.: Econometric analysis of cross section and panel data. The MIT Press, Cambridge (2002)Google Scholar
  40. Yu, J., Lee, L.-F.: Estimation of unit root spatial dynamic panel data models. Econ. Theory 26(05), 1332–1362 (2010)CrossRefGoogle Scholar
  41. Yu, J., de Jong, R., Lee, L.-F.: Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. J. Econ. 146(1), 118–134 (2008)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Univeristé du Québec À RimouskiRimouskiCanada
  2. 2.Laboratoire d’Économie et de GestionDijon CedexFrance

Personalised recommendations