Improving the multi-dimensional comparison of simulation results: a spatial visualization approach

  • Daniel Arribas-Bel
  • Julia Koschinsky
  • Pedro Vasconcelos Amaral
Original Paper
  • 120 Downloads

Abstract

Results from simulation experiments are important in applied spatial econometrics to, for instance, assess the performance of spatial estimators and tests for finite samples. However, the traditional tabular and graphical formats for displaying simulation results in the literature have several disadvantages. These include loss of results, lack of intuitive synthesis, and difficulty in comparing results across multiple dimensions. We propose to address these challenges through a spatial visualization approach. This approach visualizes model precision and bias as well as the size and power of tests in map format. The advantage of this spatial approach is that these maps can display all results succinctly, enable an intuitive interpretation, and compare results efficiently across multiple dimensions of a simulation experiment. Due to the respective strengths of tables, graphs and maps, we propose this spatial approach as a supplement to traditional tabular and graphical display formats.

Keywords

Spatial visualization Monte Carlo simulation experiments Spatial econometrics 

JEL Classification

Y1 C5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselin, L.: Non-nested tests on the weight structure in spatial autoregressive models: Some Monte Carlo results. J Reg Sci 26(2), 267–284 (1986) CrossRefGoogle Scholar
  2. Anselin, L.: Spatial econometrics. Kluwer Academic, Dordrecht (1988) Google Scholar
  3. Anselin, L., Arribas-Bel, D.: Spatial fixed effects and spatial dependence. Working Paper, GeoDa Center for Geospatial Analysis and Computation (2011) Google Scholar
  4. Anselin, L., Kelejian, H.: Testing for spatial error autocorrelation in the presence of endogenous regressors. Int Reg Sci Rev 20(1), 153 (1997) CrossRefGoogle Scholar
  5. Anselin, L., Moreno, R.: Properties of tests for spatial error components. Reg Sci Urban Econ 33(5), 595–618 (2003) CrossRefGoogle Scholar
  6. Anselin, L., Rey, S.: The performance of tests for spatial dependence in a linear regression. Technical Report, National Center for Geographic Information and Analysis (NCGIA), University of California, Santa Barbara (1990) Google Scholar
  7. Anselin, L., Rey, S.: Properties of tests for spatial dependence in linear regression models. Geogr Anal 23(2), 112–131 (1991) CrossRefGoogle Scholar
  8. Baltagi, B.H., Song, S.H., Koh, W.: Testing panel data regression models with spatial error correlation. J Econom 117(1), 123–150 (2003) CrossRefGoogle Scholar
  9. Baltagi, B.H., Egger, P., Pfaffermayr, M.: A Monte Carlo study for pure and pretest estimators of a panel data model with spatially autocorrelated disturbances. Ann Econ Stat 87/88(3), 11–38 (2007) Google Scholar
  10. Davidson, R., MacKinnon, J.G.: Graphical methods for investigating the size and power of hypothesis tests. Manch Sch 66(1), 1–26 (1998) CrossRefGoogle Scholar
  11. Egger, P., Larch, M., Pfaffermayr, M., Walde, J.: Small sample properties of maximum likelihood versus generalized method of moments based tests for spatially autocorrelated errors. Reg Sci Urban Econ 39(6), 670–678 (2009) CrossRefGoogle Scholar
  12. Fingleton, B., Le Gallo, J.: Endogeneity in a spatial context: Properties of estimators. In: Páez, A., Buliung, R.N., Gallo, J.L., Dallerba, S. (eds.) Progress in Spatial Analysis. Advances in Spatial Science, pp. 59–73. Springer, Berlin (2010) CrossRefGoogle Scholar
  13. Florax, R., de Graaff, T.: The performance of diagnostic tests for spatial dependence in linear regression models: a meta-analysis of simulation studies. In: Anselin, L., Florax, R., Rey, S. (eds.) Advances in Spatial Econometrics: Methodology, Tools and Applications, pp. 29–65. Springer, Berlin (2004) Google Scholar
  14. Kelejian, H., Prucha, I.: A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Estate Finance Econ 17(1), 99–121 (1998) CrossRefGoogle Scholar
  15. Kelejian, H., Prucha, I.: A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40(2), 509–533 (1999) CrossRefGoogle Scholar
  16. Kelejian, H., Prucha, I.: HAC estimation in a spatial framework. J Econom 140(1), 131–154 (2007) CrossRefGoogle Scholar
  17. Kelejian, H.H., Robinson, D.P.: A suggested test for spatial autocorrelation and/or heteroskedasticity and corresponding Monte Carlo results. Reg Sci Urban Econ 28(4), 389–417 (1998) CrossRefGoogle Scholar
  18. Lambert, D.M., Brown, J.P., Florax, R.J.: A two-step estimator for a spatial lag model of counts: theory, small sample performance and an application. Reg Sci Urban Econ 40(4), 241–252 (2010) CrossRefGoogle Scholar
  19. Lee, L.F.: Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6), 1899–1925 (2004) CrossRefGoogle Scholar
  20. Lee, L.F., Liu, X.: Efficient gmm estimation of high order spatial autoregressive models with autoregressive disturbances. Econom Theory 26(01), 187–230 (2010) CrossRefGoogle Scholar
  21. López, F., Mur, J., Angulo, A.: Local estimation of spatial autocorrelation processes. In: Páez, A., Buliung, R.N., Gallo, J.L., Dallerba, S. (eds.) Progress in Spatial Analysis. Advances in Spatial Science, pp. 93–116. Springer, Berlin (2010) CrossRefGoogle Scholar
  22. Mur, J., Angulo, A.: Model selection strategies in a spatial setting: Some additional results. Reg Sci Urban Econ 39(2), 200–213 (2009) CrossRefGoogle Scholar
  23. Stakhovych, S., Bijmolt, T.H.: Specification of spatial models: a simulation study on weights matrices. Pap Reg Sci 88(2), 389–408 (2009) CrossRefGoogle Scholar
  24. Tufte, E.R.: The Visual Display of Quantitative Information, 2nd edn. Graphics Press, Nuneaton (2001) Google Scholar
  25. Wilk, M.B., Gnanadesikan, R.: Probability plotting methods for the analysis of data. Biometrika 33(1), 1–17 (1968) Google Scholar
  26. Yu, H.L., Christakos, G., Bogaert, P.: Dealing with spatiotemporal heterogeneity: The generalized bme model. In: Páez, A., Buliung, R.N., Gallo, J.L., Dallerba, S. (eds.) Progress in Spatial Analysis. Advances in Spatial Science, pp. 75–92. Springer, Berlin (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daniel Arribas-Bel
    • 1
  • Julia Koschinsky
    • 1
  • Pedro Vasconcelos Amaral
    • 1
    • 2
  1. 1.GeoDa Center for Geospatial Analysis and ComputationSchool of Geographical Sciences and Urban PlanningTempeUSA
  2. 2., University of CambridgeCambridgeUK

Personalised recommendations