Laser capture microdissection: techniques and applications in liver diseases

  • Beatriz Aguilar-Bravo
  • Pau Sancho-Bru
Review Article


Routine transcriptomic and proteomic analysis are usually performed at a whole organ or tissue level. These approaches provide an average readout of all cell types present within the tissue but do not allow differentiating the profile of specific cell populations. Laser capture microdissection (LCM) constitutes an excellent tool to isolate cell populations or areas of interest within a tissue. By direct visualization, the selected area is excised by a laser and can be further processed for a variety of downstream analyses. This technology has been widely used in the study of liver diseases, from DNA and RNA sequencing to mass spectrometry. However, LCM also has important limitations. To ensure the best integrity of the molecule of interest, optimal tissue preservation, careful tissue sectioning, and optimization of the staining procedure are required. The present review provides a description of the LCM technology, including tips and technical recommendations to perform the procedure, as well as an overview of studies using LCM technology in the field of liver disease.


Laser capture microdissection Liver diseases Tissue preservation Transcriptome Proteome Downstream analysis 



The work was funded by grants from Instituto de Salud Carlos III (PI17/00673), Miguel Servet (CP/00041) and PFIS (FI16/00203), co-financed by Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, ‘Una manera de hacer Europa’ and The European Foundation for Alcohol Research (ERAB) Grant EA1653.

Compliance with ethical standards


The work was funded by grants from the Instituto de Salud Carlos III (PI17/00673), Miguel Servet (CP/00041) and PFIS (FI16/00203), co-financed by the Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, ‘Una manera de hacer Europa’ and The European Foundation for Alcohol Research (ERAB) Grant EA1653.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any study with human participants or animals performed by any of the authors.


  1. 1.
    Kandathil AJ, Graw F, Quinn J, Hwang HS, Torbenson M, Perelson AS, et al. Use of laser capture microdissection to map hepatitis C virus-positive hepatocytes in human liver. Gastroenterology 2013;145(1404–1413):e10Google Scholar
  2. 2.
    Henriet E, Abou Hammoud A, Dupuy J-W, Dartigues B, Ezzoukry Z, Dugot-Senant N, et al. Argininosuccinate synthase 1 (ASS1): a marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatology 2017;66:2016–2028CrossRefGoogle Scholar
  3. 3.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science 1996;274:998–1001CrossRefGoogle Scholar
  4. 4.
    Fodor SP, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. DNA SEQUENCING: massively parallel genomics. Science (80-) [Internet] 1997;277:393–395 (American Association for the Advancement of Science) CrossRefGoogle Scholar
  5. 5.
    Murray GI, Curran S. Laser capture microdissection: methods and protocols. New York: Humana Press; 2005.CrossRefGoogle Scholar
  6. 6.
    Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc 2006;1:586–603CrossRefGoogle Scholar
  7. 7.
    Fang J, Schneider B. Laser microdissection: a sample preparation technique for plant micrometabolic profiling. Phytochem Anal 2014;25:307–313CrossRefGoogle Scholar
  8. 8.
    Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: big data from small samples. Histol Histopathol 2015;30:1255–1269PubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu H, Mcdowell TL, Hanson NE, Tang X, Fujimoto J, Rodriguez-Canales J. Laser capture microdissection for the investigative pathologist. Vet Pathol 2014;51(1):257–269CrossRefGoogle Scholar
  10. 10.
    Tangrea MA, Mukherjee S, Gao B, Markey SP, Du Q, Armani M, et al. Effect of immunohistochemistry on molecular analysis of tissue samples: implications for microdissection technologies. J Histochem Cytochem 2011;59:591–600(in press 10.1002/HEP.30472)CrossRefGoogle Scholar
  11. 11.
    Liu A. Laser capture microdissection in the tissue biorepository. J Biomol Tech 2010;21:120–125 (The Association of Biomolecular Resource Facilities) PubMedPubMedCentralGoogle Scholar
  12. 12.
    Vandewoestyne M, Goossens K, Burvenich C, Van Soom A, Peelman L, Deforce D. Laser capture microdissection: should an ultraviolet or infrared laser be used? Anal Biochem 2013;439:88–98CrossRefGoogle Scholar
  13. 13.
    Gallagher RI, Blakely SR, Liotta LA, Espina V. Laser capture microdissection: ArcturusXT infrared capture and UV cutting methods. New York: Humana Press; 2012. pp. 157–178Google Scholar
  14. 14.
    Yi L, Liang Z-T, Peng Y, Yao X, Chen H-B, Zhao Z-Z. Tissue-specific metabolite profiling of alkaloids in Sinomenii Caulis using laser microdissection and liquid chromatography–quadrupole/time of flight-mass spectrometry. J Chromatogr A 2012;1248:93–103 (Elsevier) CrossRefGoogle Scholar
  15. 15.
    Schad M, Mungur R, Fiehn O, Kehr J. Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 2005;1:2 (BioMed Central) CrossRefGoogle Scholar
  16. 16.
    Dilillo M, Pellegrini D, Ait-Belkacem R, de Graaf EL, Caleo M, McDonnell LA. Mass spectrometry imaging, laser capture microdissection, and LC-MS/MS of the same tissue section. J Proteome Res 2017;16:2993–3001CrossRefGoogle Scholar
  17. 17.
    Hutchinson RW, Cox AG, McLeod CW, Marshall PS, Harper A, Dawson EL, et al. Imaging and spatial distribution of β-amyloid peptide and metal ions in Alzheimer’s plaques by laser ablation—inductively coupled plasma—mass spectrometry. Anal Biochem 2005;346:225–233CrossRefGoogle Scholar
  18. 18.
    Wu B, Becker JS. Bioimaging of metals in rat brain hippocampus by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS) using high-efficiency laser ablation chambers. Int J Mass Spectrom 2012;323–324:34–40 (Elsevier) CrossRefGoogle Scholar
  19. 19.
    Honda M, Nakamura M, Tateno M, Sakai A, Shimakami T, Shirasaki T, et al. Differential interferon signaling in liver lobule and portal area cells under treatment for chronic hepatitis C. J Hepatol 2010;53:817–826CrossRefGoogle Scholar
  20. 20.
    Sansonno D, Tucci FA, De Re V, Lauletta G, Montrone M, Libra M, et al. HCV-associated B cell clonalities in the liver do not carry the t(14;18) chromosomal translocation. Hepatology 2005;42:1019–1027CrossRefGoogle Scholar
  21. 21.
    Honda M, Shirasaki T, Shimakami T, Sakai A, Horii R, Arai K, et al. Hepatic interferon-stimulated genes are differentially regulated in the liver of chronic hepatitis C patients with different interleukin-28B genotypes. Hepatology 2014;59:828–838CrossRefGoogle Scholar
  22. 22.
    Chiu K-W, Nakano T, Chen K-D, Hu T-H, Lin C-C, Hsu L-W, et al. Identification of IL-28B genotype modification in hepatocytes after living donor liver transplantation by laser capture microdissection and pyrosequencing analysis. Biomed Res Int 2018;2018:1–8Google Scholar
  23. 23.
    Munshaw S, Hwang HS, Torbenson M, Quinn J, Hansen KD, Astemborski J, et al. Laser captured hepatocytes show association of butyrylcholinesterase gene loss and fibrosis progression in hepatitis C-infected drug users. Hepatology 2012;56:544–554CrossRefGoogle Scholar
  24. 24.
    Wang H, Gao Y, Jin X, Xiao J. Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis. Liver Int 2010;30:126–138CrossRefGoogle Scholar
  25. 25.
    Deng H, Gao Y-B, Wang H-F, Jin X-L, Xiao J-C. Expression of deleted in malignant brain tumours 1 (DMBT1) relates to the proliferation and malignant transformation of hepatic progenitor cells in hepatitis B virus-related liver diseases. Histopathology 2012;60:249–260CrossRefGoogle Scholar
  26. 26.
    Mishiro T, Hamamoto S, Furuta K, Ishimura N, Rumi MAK, Miyake T, et al. Quantitative measurement of hepatitis B virus DNA in different areas of hepatic lobules in patients with chronic hepatitis B. J Med Virol 2006;78:37–43CrossRefGoogle Scholar
  27. 27.
    Tu T, Mason WS, Clouston AD, Shackel NA, McCaughan GW, Yeh MM, et al. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J Viral Hepat 2015;22:737–753CrossRefGoogle Scholar
  28. 28.
    Xu W, Wang N-R, Wang H-F, Feng Q, Deng J, Gong Z-Q, et al. Analysis of epithelial-mesenchymal transition markers in the histogenesis of hepatic progenitor cell in HBV-related liver diseases. Diagn Pathol 2016;11:136CrossRefGoogle Scholar
  29. 29.
    McDaniel K, Huang L, Sato K, Wu N, Annable T, Zhou T, et al. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem 2017;292:11336–11347CrossRefGoogle Scholar
  30. 30.
    Ceulemans A, Verhulst S, Van Haele M, Govaere O, Ventura J-J, van Grunsven LA, et al. RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death Dis 2017;8:e3164CrossRefGoogle Scholar
  31. 31.
    Wu N, McDaniel K, Zhou T, Ramos-Lorenzo S, Wu C, Huang L, et al. Knockout of microRNA-21 attenuates alcoholic hepatitis through VHL/NF-κB signaling pathway in hepatic stellate cells. Am J Physiol Liver Physiol 2018;315(3):G385–G398. CrossRefGoogle Scholar
  32. 32.
    Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 2017;66:1321–1328CrossRefGoogle Scholar
  33. 33.
    Baba N, Kobashi H, Yamamoto K, Terada R, Suzuki T, Hakoda T, et al. Gene expression profiling in biliary epithelial cells of primary biliary cirrhosis using laser capture microdissection and cDNA microarray. Transl Res 2006;148:103–113CrossRefGoogle Scholar
  34. 34.
    Gehring S, Dickson EM, San Martin ME, van Rooijen N, Papa EF, Harty MW, et al. Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 2006;130:810–822CrossRefGoogle Scholar
  35. 35.
    McDaniel K, Meng F, Wu N, Sato K, Venter J, Bernuzzi F, et al. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology 2017;65:544–559 (NIH Public Access) CrossRefGoogle Scholar
  36. 36.
    Katsumi T, Ninomiya M, Nishina T, Mizuno K, Tomita K, Haga H, et al. MiR-139-5p is associated with inflammatory regulation through c-FOS suppression, and contributes to the progression of primary biliary cholangitis. Lab Investig 2016;96:1165–1177CrossRefGoogle Scholar
  37. 37.
    Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Borght SV, Gaudio E, et al. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut 2010;59:247–257CrossRefGoogle Scholar
  38. 38.
    Adam AC, Faudou V, Paschen SA, Adam OM, Kahl P, Drebber U, et al. Hepatocarcinogenesis in non-cirrhotic liver is associated with a reduced number of clonal hepatocellular patches in non-tumorous liver parenchyma. J Pathol 2012;228:333–340CrossRefGoogle Scholar
  39. 39.
    Melis M, Diaz G, Kleiner DE, Zamboni F, Kabat J, Lai J, et al. Viral expression and molecular profiling in liver tissue versus microdissected hepatocytes in hepatitis B virus—associated hepatocellular carcinoma. J Transl Med 2014;12:230CrossRefGoogle Scholar
  40. 40.
    Yang Y, Lin X, Lu X, Luo G, Zeng T, Tang J, et al. Interferon-microRNA signalling drives liver precancerous lesion formation and hepatocarcinogenesis. Gut 2016;65:1186–1201CrossRefGoogle Scholar
  41. 41.
    Michael AOA, Ahsan N, Zabala V, Francois-Vaughan H, Post S, Brilliant KE, et al. Proteomic analysis of laser capture microdissected focal lesions in a rat model of progenitor marker-positive hepatocellular carcinoma. Oncotarget 2017;8:26041–26056CrossRefGoogle Scholar
  42. 42.
    Taniai M, Higuchi H, Burgart LJ, Gores GJ. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology 2002;123:1090–1098CrossRefGoogle Scholar
  43. 43.
    Chen L, Yan H-X, Yang W, Hu L, Yu L-X, Liu Q, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 2009;50:358–369 (Elsevier) CrossRefGoogle Scholar
  44. 44.
    Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012;142(1021–1031):e15 (NIH Public Access) Google Scholar
  45. 45.
    Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013;119:1669–1674CrossRefGoogle Scholar
  46. 46.
    Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology 2013;58:1992–2000CrossRefGoogle Scholar
  47. 47.
    Asukai K, Kawamoto K, Eguchi H, Konno M, Asai A, Iwagami Y, et al. Micro-RNA-130a-3p regulates gemcitabine resistance via PPARG in cholangiocarcinoma. Ann Surg Oncol 2017;24:2344–2352CrossRefGoogle Scholar
  48. 48.
    Iida M, Hazama S, Tsunedomi R, Tanaka H, Takenouchi H, Kanekiyo S, et al. Overexpression of miR-221 and miR-222 in the cancer stroma is associated with malignant potential in colorectal cancer. Oncol Rep 2018;40:1621–1631PubMedGoogle Scholar
  49. 49.
    Iino I, Kikuchi H, Miyazaki S, Hiramatsu Y, Ohta M, Kamiya K, et al. Effect of miR-122 and its target gene cationic amino acid transporter 1 on colorectal liver metastasis. Cancer Sci 2013;104:624–630CrossRefGoogle Scholar
  50. 50.
    Murakami T, Kikuchi H, Ishimatsu H, Iino I, Hirotsu A, Matsumoto T, et al. Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis. Br J Cancer 2017;117(9):1360CrossRefGoogle Scholar
  51. 51.
    Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 1996;68:67–108CrossRefGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2019

Authors and Affiliations

  1. 1.Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)BarcelonaSpain

Personalised recommendations