Hepatology International

, Volume 10, Issue 1, pp 124–132 | Cite as

Albumin in chronic liver disease: structure, functions and therapeutic implications

  • Rosaria SpinellaEmail author
  • Rohit Sawhney
  • Rajiv JalanEmail author
Review Article


Human serum albumin is a critical plasma protein produced by the liver with a number of accepted clinical indications in chronic liver disease including management of circulatory and renal dysfunction in patients with ascites. Advanced cirrhosis is characterised by reduced albumin concentration as well as impaired albumin function as a result of specific structural changes and oxidative damage. Traditionally, the biologic and therapeutic role of albumin in liver disease was attributed to its oncotic effects but it is now understood that albumin has a wide range of other important physiologic functions such as immunomodulation, endothelial stabilisation, antioxidant effects and binding multiple drugs, toxins and other molecules. This review discusses the multifunctional properties of albumin and, in particular, the biologic and clinical implications of structural and functional changes of albumin that are associated with cirrhosis. Based on these insights, we explore the current and potential future therapeutic uses of albumin in liver disease.


Human serum albumin Cirrhosis Chronic liver disease Non oncotic functions Albumin function Oxidation 


Compliance with ethical standards

Conflict of interest

Rosaria Spinella and Rohit Sawhney declare that they have no conflict of interest. Rajiv Jalan has served on the Scientific Advisory Board for Conatus Pharma, has received lecture fees from Gambro and has on-going research collaboration with Gambro, Grifols and is the Principal Investigator of an Industry sponsored study (Sequana Medical). He is also inventor for a drug, l-ornithine phenyl acetate (OCR-002), which UCL has licensed to Ocera Therapeutics. He is also the founder of the UCL spin-out company Yaqrit Ltd. and Cyberliver Ltd.

Ethical approval

This article does not contain any studies with human participants or animals.


  1. 1.
    Domenicali M, Baldassarre M, Giannone FA, Naldi M, Mastroroberto M, Biselli M, Laggetta M, et al. Posttranscriptional changes of serum albumin: clinical and prognostic significance in hospitalized patients with cirrhosis. Hepatology. 2014;60:1851–1860.CrossRefPubMedGoogle Scholar
  2. 2.
    Oettl K, Birner-Gruenberger R, Spindelboeck W, Stueger HP, Dorn L, Stadlbauer V, Putz-Bankuti C, et al. Oxidative albumin damage in chronic liver failure: relation to albumin binding capacity, liver dysfunction and survival. J Hepatol. 2013;59:978–983.CrossRefPubMedGoogle Scholar
  3. 3.
    Jalan R, Schnurr K, Mookerjee RP, Sen S, Cheshire L, Hodges S, Muravsky V, et al. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology. 2009;50:555–564.CrossRefPubMedGoogle Scholar
  4. 4.
    Jalan R, Bernardi M. Effective albumin concentration and cirrhosis mortality: from concept to reality. J Hepatol. 2013;59:918–920.CrossRefPubMedGoogle Scholar
  5. 5.
    Doweiko JP, Nompleggi DJ. The role of albumin in human physiology and pathophysiology, Part III: albumin and disease states. JPEN J Parenter Enteral Nutr. 1991;15:476–483.CrossRefPubMedGoogle Scholar
  6. 6.
    Caraceni P, Tufoni M, Bonavita ME. Clinical use of albumin. Blood Transfus. 2013;11(Suppl 4):s18–s25.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Garcia-Martinez R, Caraceni P, Bernardi M, Gines P, Arroyo V, Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 2013;58:1836–1846.CrossRefPubMedGoogle Scholar
  8. 8.
    Evans TW. Review article: albumin as a drug–biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther. 2002;16(Suppl 5):6–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illness. Br J Anaesth. 2000;85:599–610.CrossRefPubMedGoogle Scholar
  10. 10.
    Guizado TR. Analysis of the structure and dynamics of human serum albumin. J Mol Model. 2014;20:2450.CrossRefPubMedGoogle Scholar
  11. 11.
    Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 1999;12:439–446.CrossRefPubMedGoogle Scholar
  12. 12.
    Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, et al. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005;57:787–796.CrossRefPubMedGoogle Scholar
  13. 13.
    Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012;33:209–290.CrossRefPubMedGoogle Scholar
  14. 14.
    Anraku M. Elucidation of the mechanism responsible for the oxidation of serum albumin and its application in treating oxidative stress-related diseases. Yakugaku zasshi. 2014;134:973–979.CrossRefPubMedGoogle Scholar
  15. 15.
    Oettl K, Stauber RE. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol. 2007;151:580–590.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358:209–215.CrossRefPubMedGoogle Scholar
  17. 17.
    Kragh-Hansen U, Chuang VTG, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull. 2002;25:695–704.CrossRefPubMedGoogle Scholar
  18. 18.
    Arroyo V, Garcia-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol. 2014;61:396–407.CrossRefPubMedGoogle Scholar
  19. 19.
    Quinlan GJ, Margarson MP, Mumby S, Evans TW, Gutteridge JM. Administration of albumin to patients with sepsis syndrome: a possible beneficial role in plasma thiol repletion. Clin Sci (Lond). 1998;95:459–465.CrossRefGoogle Scholar
  20. 20.
    Neuzil J, Stocker R. Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J Biol Chem. 1994;269:16712–16719.PubMedGoogle Scholar
  21. 21.
    Cantin AM, Paquette B, Richter M, Larivee P. Albumin-mediated regulation of cellular glutathione and nuclear factor kappa B activation. Am J Respir Crit Care Med. 2000;162:1539–1546.CrossRefPubMedGoogle Scholar
  22. 22.
    Bortoluzzi A, Ceolotto G, Gola E, Sticca A, Bova S, Morando F, Piano S, et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms. Hepatology. 2013;57:266–276.CrossRefPubMedGoogle Scholar
  23. 23.
    Keaney JF Jr, Simon DI, Stamler JS, Jaraki O, Scharfstein J, Vita JA, Loscalzo J. NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Investig. 1993;91:1582–1589.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kim SB, Chi HS, Park JS, Hong CD, Yang WS. Effect of increasing serum albumin on plasma D-dimer, von Willebrand factor, and platelet aggregation in CAPD patients. Am J Kidney Dis. 1999;33:312–317.CrossRefPubMedGoogle Scholar
  25. 25.
    Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury. Liver Int. 2006;26:912–919.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang W-J, Frei B. Albumin selectively inhibits TNF alpha-induced expression of vascular cell adhesion molecule-1 in human aortic endothelial cells. Cardiovasc Res. 2002;55:820–829.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen TA, Tsao YC, Chen A, Lo GH, Lin CK, Yu HC, Cheng LC, et al. Effect of intravenous albumin on endotoxin removal, cytokines, and nitric oxide production in patients with cirrhosis and spontaneous bacterial peritonitis. Scand J Gastroenterol. 2009;44:619–625.CrossRefPubMedGoogle Scholar
  28. 28.
    Mookerjee RP, Stadlbauer V, Lidder S, Wright GAK, Hodges SJ, Davies NA, Jalan R. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology. 2007;46:831–840.CrossRefPubMedGoogle Scholar
  29. 29.
    Stadlbauer V, Mookerjee RP, Wright GAK, Davies NA, Jurgens G, Hallstrom S, Jalan R. Role of Toll-like receptors 2, 4, and 9 in mediating neutrophil dysfunction in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G15–G22.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    O’Brien AJ, Fullerton JN, Massey KA, Auld G, Sewell G, James S, Newson J, et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med. 2014;20:518–523.CrossRefPubMedGoogle Scholar
  31. 31.
    Qiao R, Siflinger-Birnboim A, Lum H, Tiruppathi C, Malik AB. Albumin and Ricinus communis agglutinin decrease endothelial permeability via interactions with matrix. Am J Physiol. 1993;265:C439–C446.PubMedGoogle Scholar
  32. 32.
    Lang JD Jr, Figueroa M, Chumley P, Aslan M, Hurt J, Tarpey MM, Alvarez B, et al. Albumin and hydroxyethyl starch modulate oxidative inflammatory injury to vascular endothelium. Anesthesiology. 2004;100:51–58.CrossRefPubMedGoogle Scholar
  33. 33.
    Garcia-Martinez R, Andreola F, Mehta G, Poulton K, Oria M, Jover M, Soeda J, et al. Immunomodulatory and antioxidant function of albumin stabilises the endothelium and improves survival in a rodent model of chronic liver failure. J Hepatol 2015;62:799-806. Google Scholar
  34. 34.
    Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, Durand F, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013;144:1426–1437.Google Scholar
  35. 35.
    Oettl K, Stadlbauer V, Petter F, Greilberger J, Putz-Bankuti C, Hallstrom S, Lackner C, et al. Oxidative damage of albumin in advanced liver disease. Biochim Biophys Acta. 2008;1782:469–473.CrossRefPubMedGoogle Scholar
  36. 36.
    Klammt S, Brinkmann B, Mitzner S, Munzert E, Loock J, Stange J, Emmrich J, et al. Albumin binding capacity (ABiC) is reduced in commercially available human serum albumin preparations with stabilizers. Z Gastroenterol. 2001;39(Suppl 2):24–27.CrossRefPubMedGoogle Scholar
  37. 37.
    Bhagavan NV, Lai EM, Rios PA, Yang J, Ortega-Lopez AM, Shinoda H, Honda SA, et al. Evaluation of human serum albumin cobalt binding assay for the assessment of myocardial ischemia and myocardial infarction. Clin Chem. 2003;49:581–585.CrossRefPubMedGoogle Scholar
  38. 38.
    Klammt S, Mitzner SR, Stange J, Loock J, Heemann U, Emmrich J, Reisinger EC, et al. Improvement of impaired albumin binding capacity in acute-on-chronic liver failure by albumin dialysis. Liver Transplant. 2008;14:1333–9.CrossRefGoogle Scholar
  39. 39.
    Giannone FA, Domenicali M, Baldassarre M, Bartoletti M, Naldi M, Laggetta M, Bertucci C, et al. Ischaemia-modified albumin: a marker of bacterial infection in hospitalized patients with cirrhosis. Liver Int 2015. doi: 10.1111/liv.12860.
  40. 40.
    Garcia-Martinez R, Noiret L, Sen S, Mookerjee R, Jalan R. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury. Liver Int 2015;35:335–343.Google Scholar
  41. 41.
    European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.CrossRefGoogle Scholar
  42. 42.
    Runyon BA, Committee APG. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49:2087–2107.CrossRefPubMedGoogle Scholar
  43. 43.
    Salo J, Gines A, Gines P, Piera C, Jimenez W, Guevara M, Fernandez-Esparrach G, et al. Effect of therapeutic paracentesis on plasma volume and transvascular escape rate of albumin in patients with cirrhosis. J Hepatol. 1997;27:645–653.CrossRefPubMedGoogle Scholar
  44. 44.
    Ruiz-del-Arbol L, Monescillo A, Jimenez W, Garcia-Plaza A, Arroyo V, Rodes J. Paracentesis-induced circulatory dysfunction: mechanism and effect on hepatic hemodynamics in cirrhosis. Gastroenterology. 1997;113:579–586.CrossRefPubMedGoogle Scholar
  45. 45.
    Vila MC, Sola R, Molina L, Andreu M, Coll S, Gana J, Marquez J, et al. Hemodynamic changes in patients developing effective hypovolemia after total paracentesis. J Hepatol. 1998;28:639–645.CrossRefPubMedGoogle Scholar
  46. 46.
    Kwok CS, Krupa L, Mahtani A, Kaye D, Rushbrook SM, Phillips MG, Gelson W. Albumin reduces paracentesis-induced circulatory dysfunction and reduces death and renal impairment among patients with cirrhosis and infection: a systematic review and meta-analysis. BioMed Res Int. 2013;2013:295153.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Gines P, Cardenas A. The management of ascites and hyponatremia in cirrhosis. Semin Liver Dis. 2008;28:43–58.CrossRefPubMedGoogle Scholar
  48. 48.
    Salerno F, Guevara M, Bernardi M, Moreau R, Wong F, Angeli P, Garcia-Tsao G, et al. Refractory ascites: pathogenesis, definition and therapy of a severe complication in patients with cirrhosis. Liver Int. 2010;30:937–947.CrossRefPubMedGoogle Scholar
  49. 49.
    Bernardi M, Caraceni P, Navickis RJ, Wilkes MM. Albumin infusion in patients undergoing large-volume paracentesis: a meta-analysis of randomized trials. Hepatology. 2012;55:1172–1181.CrossRefPubMedGoogle Scholar
  50. 50.
    Moller S, Henriksen JH. Cirrhotic cardiomyopathy. J Hepatol. 2010;53:179–190.CrossRefPubMedGoogle Scholar
  51. 51.
    Ortega R, Gines P, Uriz J, Cardenas A, Calahorra B, De Las Heras D, Guevara M, et al. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. Hepatology. 2002;36:941–948.CrossRefPubMedGoogle Scholar
  52. 52.
    Neri S, Pulvirenti D, Malaguarnera M, Cosimo BM, Bertino G, Ignaccolo L, Siringo S, et al. Terlipressin and albumin in patients with cirrhosis and type I hepatorenal syndrome. Dig Dis Sci. 2008;53:830–835.CrossRefPubMedGoogle Scholar
  53. 53.
    Martin-Llahi M, Pepin MN, Guevara M, Diaz F, Torre A, Monescillo A, Soriano G, et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008;134:1352–1359.CrossRefPubMedGoogle Scholar
  54. 54.
    Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, Castells L, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341:403–409.CrossRefPubMedGoogle Scholar
  55. 55.
    Salerno F, Navickis RJ, Wilkes MM. Albumin infusion improves outcomes of patients with spontaneous bacterial peritonitis: a meta-analysis of randomized trials. Clin Gastroenterol Hepatol. 2013;11:123–130.e121.CrossRefPubMedGoogle Scholar
  56. 56.
    Fernandez J, Navasa M, Garcia-Pagan JC, G-Abraldes J, Jimenez W, Bosch J, Arroyo V. Effect of intravenous albumin on systemic and hepatic hemodynamics and vasoactive neurohormonal systems in patients with cirrhosis and spontaneous bacterial peritonitis. J Hepatol. 2004;41:384–390.CrossRefPubMedGoogle Scholar
  57. 57.
    Fernandez J, Monteagudo J, Bargallo X, Jimenez W, Bosch J, Arroyo V, Navasa M. A randomized unblinded pilot study comparing albumin versus hydroxyethyl starch in spontaneous bacterial peritonitis. Hepatology. 2005;42:627–634.CrossRefPubMedGoogle Scholar
  58. 58.
    Fernandez J, Navasa M, Gomez J, Colmenero J, Vila J, Arroyo V, Rodes J. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology. 2002;35:140–148.CrossRefPubMedGoogle Scholar
  59. 59.
    Arvaniti V, D’Amico G, Fede G, Manousou P, Tsochatzis E, Pleguezuelo M, Burroughs AK. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010;139:1246–1256.Google Scholar
  60. 60.
    Jalan R, Fernandez J, Wiest R, Schnabl B, Moreau R, Angeli P, Stadlbauer V, et al. Bacterial infections in cirrhosis: a position statement based on the EASL special conference 2013. J Hepatol. 2014;60:1310–1324.CrossRefPubMedGoogle Scholar
  61. 61.
    Guevara M, Terra C, Nazar A, Sola E, Fernandez J, Pavesi M, Arroyo V, et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study. J Hepatol. 2012;57:759–765.CrossRefPubMedGoogle Scholar
  62. 62.
    Thevenot T, Bureau C, Oberti F, Anty R, Louvet A, Plessier A, Rudler M, et al. Effect of albumin in cirrhotic patients with infection other than spontaneous bacterial peritonitis. A randomized trial. J Hepatol. 2015;62:822–830.CrossRefPubMedGoogle Scholar
  63. 63.
    Tarao K, Iwamura K. Influence of long-term administration of serum albumin on the prognosis of liver cirrhosis in man. Tokai J Exp Clin Med. 1983;8:71–78.PubMedGoogle Scholar
  64. 64.
    Romanelli R-G, La Villa G, Barletta G, Vizzutti F, Lanini F, Arena U, Boddi V, et al. Long-term albumin infusion improves survival in patients with cirrhosis and ascites: an unblinded randomized trial. World J Gastroenterol. 2006;12:1403–1407.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Gentilini P, Casini-Raggi V, Di Fiore G, Romanelli RG, Buzzelli G, Pinzani M, La Villa G, et al. Albumin improves the response to diuretics in patients with cirrhosis and ascites: results of a randomized, controlled trial. J Hepatol. 1999;30:639–645.CrossRefPubMedGoogle Scholar
  66. 66.
    Romero-Gomez M, Montagnese S, Jalan R. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J Hepatol. 2015;62:437–447.CrossRefPubMedGoogle Scholar
  67. 67.
    Jalan R, Kapoor D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin Sci. 2004;106:467–474.CrossRefPubMedGoogle Scholar
  68. 68.
    Simon-Talero M, Garcia-Martinez R, Torrens M, Augustin S, Gomez S, Pereira G, Guevara M, et al. Effects of intravenous albumin in patients with cirrhosis and episodic hepatic encephalopathy: a randomized double-blind study. J Hepatol. 2013;59:1184–1192.CrossRefPubMedGoogle Scholar
  69. 69.
    Nevens F, Laleman W. Artificial liver support devices as treatment option for liver failure. Best Pract Res Clin Gastroenterol. 2012;26:17–26.CrossRefPubMedGoogle Scholar
  70. 70.
    Jalan R, Williams R. Improvement in cerebral perfusion after MARS therapy: further clues about the pathogenesis of hepatic encephalopathy? Liver Transplant. 2001;7:713–415.CrossRefGoogle Scholar
  71. 71.
    Banares R, Nevens F, Larsen FS, Jalan R, Albillos A, Dollinger M, Saliba F, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology. 2013;57:1153–1162.CrossRefPubMedGoogle Scholar
  72. 72.
    Kribben A, Gerken G, Haag S, Herget-Rosenthal S, Treichel U, Betz C, Sarrazin C, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology. 2012;142:782–789.CrossRefPubMedGoogle Scholar
  73. 73.
    Oettl K, Stadlbauer V, Krisper P, Stauber RE. Effect of extracorporeal liver support by molecular adsorbents recirculating system and Prometheus on redox state of albumin in acute-on-chronic liver failure. Ther Apher Dial. 2009;13:431–436.CrossRefPubMedGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2015

Authors and Affiliations

  1. 1.Liver Failure Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free HospitalLondonUK

Personalised recommendations