Hepatology International

, Volume 8, Issue 1, pp 137–145 | Cite as

Everolimus-based immunosuppression in liver transplant recipients: a single-centre experience

  • Εvangelos Cholongitas
  • Ioannis Goulis
  • Eleni Theocharidou
  • Nikolaos Antoniadis
  • Ioannis Fouzas
  • Dimitrios Giakoustidis
  • George Imvrios
  • Olga Giouleme
  • Vasilios Papanikolaou
  • Evangelos Akriviadis
  • Themistoklis Vasiliadis
Original Article



Everolimus, a mammalian target of rapamycin inhibitor, has been shown to reduce growth factor-mediated cell proliferation, but data regarding its effectiveness and impact on renal function and recurrence of hepatocellular carcinoma (HCC) in liver transplant (LT) recipients are limited.


We evaluated LT recipients with a calcineurin inhibitor (CNI)-based immunosuppression regimen in whom everolimus treatment was initiated. The changes in laboratory data, including glomerular filtration rate (GFR), compared to the baseline (i.e. the day of everolimus conversion), were assessed.


Totally, 44 consecutive patients (32 men, age 55 ± 7 years) were commenced on everolimus [indications: renal dysfunction post-LT (16 patients, group 1); prevention of HCC recurrence (21 patients) or others (7 patients), group 2] at 6 months (range 1–206) post-LT. After 48 (range 12–76) months, all patients were alive without any rejection episodes. Compared to group 2 patients, group 1 patients had significantly greater improvement in renal function (DGFR: 12 ± 5 vs. −0.4 ± 0.2 ml/min, p = 0.02). GFR at baseline (OR 0.08, p = 0.002) and the combination of everolimus + MMF (OR 0.14, p = 0.024) were the factors independently associated with improvement in renal function. Finally, HCC recurrence was observed less frequently in the everolimus group of patients (n = 21) compared to the CNI-historical control group (n = 22) with HCC before LT [0/21 (0 %) vs. 4/22 (18.5 %), log rank p = 0.055), although the two groups of recipients had similar baseline characteristics and follow-up.


Everolimus is effective and is associated with low rates of HCC recurrence and improvement of renal function in LT recipients.


Everolimus Liver transplantation Mammalian target of rapamycin inhibitor Renal function Hepatocellular carcinoma 



Hepatocellular carcinoma


Liver transplantation


Glomerular filtration rate


Calcineurin inhibitors


Mammalian target of rapamycin


Mycophenolate mofetil


Compliance with ethical requirements and Conflict of interest

Εvangelos Cholongitas, Eleni Theocharidou, Ioannis Goulis, Nikolaos Antoniadis, Ioannis Fouzas, George Imvrios, Olga Giouleme, Vasilios Papanikolaou, Evangelos Akriviadis, and Themistoklis Vasiliadis declare that all procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 [5]. Informed consent was obtained from all patients for being included in the study. Evangelos Cholongitas, John Goulis, Evangelos Akriviadis, and Themistoklis Vasiliadis have served as lecturers for Gilead, Novartis and Bristol-Meier Squibb. Eleni Theocharidou, Ioannis Goulis, Nikolaos Antoniadis, Ioannis Fouzas, George Imvrios, Olga Giouleme, and Vasilios Papanikolaou have no conflicts of interest.


  1. 1.
    Calne RY. Immunosuppression in liver transplantation. N Engl J Med. 1994;331(17):1154–1155PubMedCrossRefGoogle Scholar
  2. 2.
    de Mare-Bredemeijer EL, Metselaar HJ. Optimization of the use of Calcineurin inhibitors in liver transplantation. Best Pract Res Clin Gastroenterol. 2012;26(1):85–95PubMedCrossRefGoogle Scholar
  3. 3.
    Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397(6719):530–534PubMedCrossRefGoogle Scholar
  4. 4.
    Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349(10):931–940PubMedCrossRefGoogle Scholar
  5. 5.
    Vivarelli M, Cucchetti A, Piscaglia F, La BG, Bolondi L, Cavallari A, et al. Analysis of risk factors for tumor recurrence after liver transplantation for hepatocellular carcinoma: key role of immunosuppression. Liver Transpl. 2005;11(5):497–503PubMedCrossRefGoogle Scholar
  6. 6.
    Gonwa TA. Hypertension and renal dysfunction in long-term liver transplant recipients. Liver Transpl. 2001;7(11 Suppl 1):S22–S26PubMedCrossRefGoogle Scholar
  7. 7.
    Matsuda Y, Ichida T, Fukumoto M. Hepatocellular carcinoma and liver transplantation: clinical perspective on molecular targeted strategies. Med Mol Morphol. 2011;44(3):117–124PubMedCrossRefGoogle Scholar
  8. 8.
    Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci USA. 1994;91(24):11477–11481PubMedCrossRefGoogle Scholar
  9. 9.
    Schnitzbauer AA, Schlitt HJ, Geissler EK. Influence of immunosuppressive drugs on the recurrence of hepatocellular carcinoma after liver transplantation: a gap between basic science and clinical evidence. Transplantation. 2011;91(11):1173–1176PubMedCrossRefGoogle Scholar
  10. 10.
    De Simone P, Nevens F, De Carlis L, Metselaard HJ, Beckebaum S, Saliba F, et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant. 2012;12:3008–3020PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gurk-Turner C, Manitpisitkul W, Cooper M. A comprehensive review of everolimus clinical reports: a new mammalian target of rapamycin inhibitor. Transplantation. 2012;94(7):659–668PubMedCrossRefGoogle Scholar
  12. 12.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–470PubMedCrossRefGoogle Scholar
  13. 13.
    Fleming JS, Nunan TO. The new BNMS guidelines for measurement of glomerular filtration rate. Nucl Med Commun. 2004;25(8):755–757PubMedCrossRefGoogle Scholar
  14. 14.
    Levey AS, Stevens LA, Coresh J. Conceptual model of CKD: applications and implications. Am J Kidney Dis. 2009;53(3 Suppl 3):S4–S16PubMedCrossRefGoogle Scholar
  15. 15.
    Morard I, Mentha G, Spahr L, Majno P, Hadengue A, Huber O, et al. Long-term renal function after liver transplantation is related to calcineurin inhibitors blood levels. Clin Transplant. 2006;20(1):96–101PubMedCrossRefGoogle Scholar
  16. 16.
    Neuhaus P, Klupp J, Langrehr JM. mTOR inhibitors: an overview. Liver Transpl. 2001;7(6):473–484PubMedCrossRefGoogle Scholar
  17. 17.
    Chapman TM, Perry CM. Everolimus. Drugs. 2004;64(8):861–872PubMedCrossRefGoogle Scholar
  18. 18.
    Fairbanks KD, Eustace JA, Fine D, Thuluvath PJ. Renal function improves in liver transplant recipients when switched from a calcineurin inhibitor to sirolimus. Liver Transpl. 2003;9(10):1079–1085PubMedCrossRefGoogle Scholar
  19. 19.
    Shenoy S, Hardinger KL, Crippin J, Desai N, Korenblat K, Lisker-Melman M, et al. Sirolimus conversion in liver transplant. Transplantation. 2007;83(10):1389–1392PubMedCrossRefGoogle Scholar
  20. 20.
    Saliba F, De Simone P, Nevens F, De Carlis L, Metselaar HJ, Beckebaum S, et al. Renal function at two years in liver transplant patients receiving everolimus: results of a randomized, multicenter study. Am J Transplant. 2013;13(7):1734–1745PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer L, Klempnauer J, Beckebaum S, Metselaar HJ, Neuhaus P, Schemmer P, et al. A randomized, controlled study to assess the conversion from calcineurin-inhibitors to everolimus after liver transplantation—PROTECT. Am J Transplant. 2012;12(7):1855–1865PubMedCrossRefGoogle Scholar
  22. 22.
    Chinnakotla S, Davis GL, Vasani S, Kim P, Tomiyama K, Sanchez E, et al. Impact of sirolimus on the recurrence of hepatocellular carcinoma after liver transplantation. Liver Transpl. 2009;15(12):1834–1842PubMedCrossRefGoogle Scholar
  23. 23.
    Zimmerman MA, Trotter JF, Wachs M, Bak T, Campsen J, Skibba A, et al. Sirolimus-based immunosuppression following liver transplantation for hepatocellular carcinoma. Liver Transpl. 2008;14(5):633–638PubMedCrossRefGoogle Scholar
  24. 24.
    Toso C, Merani S, Bigam DL, Shapiro AM, Kneteman NM. Sirolimus-based immunosuppression is associated with increased survival after liver transplantation for hepatocellular carcinoma. Hepatology. 2010;51(4):1237–1243PubMedCrossRefGoogle Scholar
  25. 25.
    Vivarelli M, Dazzi A, Zanello M, Cucchetti A, Cescon M, Ravaioli M, Grazi GL, et al. Effect of different immunosuppressive schedules on recurrence-free survival after liver transplantation for hepatocellular carcinoma. Transplantation. 2010;89(2):227–231PubMedCrossRefGoogle Scholar
  26. 26.
    Liang W, Wang D, Ling X, Kao AA, Kong Y, Shang Y, et al. Sirolimus-based immunosuppression in liver transplantation for hepatocellular carcinoma: a meta-analysis. Liver Transpl. 2012;18(1):62–69PubMedCrossRefGoogle Scholar
  27. 27.
    Bilbao I, Sapisochin G, Dopazo C, Lazaro JL, Pou L, Castells L, et al. Indications and management of everolimus after liver transplantation. Transplant Proc. 2009;41(6):2172–2176PubMedCrossRefGoogle Scholar
  28. 28.
    Masetti M, Montalti R, Rompianesi G, Codeluppi M, Gerring R, Romano A, et al. Early withdrawal of calcineurin inhibitors and everolimus monotherapy in de novo liver transplant recipients preserves renal function. Am J Transplant. 2010;10(10):2252–2262PubMedCrossRefGoogle Scholar
  29. 29.
    De Simone P, Carrai P, Precisi A, Petruccelli S, Baldoni L, Balzano E, et al. Conversion to everolimus monotherapy in maintenance liver transplantation: feasibility, safety, and impact on renal function. Transpl Int. 2009;22(3):279–286PubMedCrossRefGoogle Scholar
  30. 30.
    Saliba F, Dharancy S, Lorho R, Conti F, Radenne S, Neau-Cransac M, et al. Conversion to everolimus in maintenance liver transplant patients: a multicenter, retrospective analysis. Liver Transpl. 2011;17(8):905–913PubMedCrossRefGoogle Scholar
  31. 31.
    Schleicher C, Palmes D, Utech M, Bonrath E, Senninger N, Schmidt H, et al. Timing to conversion to mammalian target of rapamycin inhibitors is crucial in liver transplant recipients with impaired renal function at transplantation. Transplant Proc. 2010;42(7):2572–2575PubMedCrossRefGoogle Scholar
  32. 32.
    Pfeiffer A, Middelberg-Bisping K, Drewes C, Schatz H. Elevated plasma levels of transforming growth factor-beta 1 in NIDDM. Diabetes Care. 1996;19(10):1113–1117PubMedCrossRefGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2013

Authors and Affiliations

  • Εvangelos Cholongitas
    • 1
  • Ioannis Goulis
    • 1
  • Eleni Theocharidou
    • 2
  • Nikolaos Antoniadis
    • 3
  • Ioannis Fouzas
    • 3
  • Dimitrios Giakoustidis
    • 3
  • George Imvrios
    • 3
  • Olga Giouleme
    • 2
  • Vasilios Papanikolaou
    • 3
  • Evangelos Akriviadis
    • 1
  • Themistoklis Vasiliadis
    • 4
  1. 1.4th Department of Internal Medicine, Hippokration General Hospital of ThessalonikiMedical School of Aristotle UniversityThessalonikiGreece
  2. 2.2nd Propedeutic Department of Internal Medicine, Hippokration HospitalMedical School of Aristotle UniversityThessalonikiGreece
  3. 3.Department of Transplant SurgeryAristotle University of ThessalonikiThessalonikiGreece
  4. 4.1st Propedeutic Department of Internal Medicine, AHEPA General Hospital Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations