Hepatology International

, Volume 7, Issue 2, pp 413–428 | Cite as

Should visceral fat, strictly linked to hepatic steatosis, be depleted to improve survival?

Review Article

Abstract

Numerous epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes mellitus, cardiovascular disease, stroke, metabolic syndrome and its further expression, i.e., nonalcoholic fatty liver disease and death. Using novel models of visceral obesity, several studies have demonstrated that the relationship between visceral fat and longevity is causal, while the accrual of subcutaneous fat does not appear to play an important role in the etiology of disease risk. The need of reducing the visceral fat to improve survival, mainly taking into account the strict link between nonalcoholic fatty liver disease and the coronary artery disease is discussed.

Keywords

NAFLD CAD 

References

  1. 1.
    Monzillo LU, Hamdy O, Horton ES, et al. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes Res. 2003;11:1048–1054PubMedCrossRefGoogle Scholar
  2. 2.
    States RA, Pappas E, Salem Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst Rev. 2009;3:CD006075PubMedGoogle Scholar
  3. 3.
    Tarantino G, Finelli C, Colao A, et al. Are hepatic steatosis and carotid intima media thickness associated in obese patients with normal or slightly elevated gamma-glutamyl-transferase? J Transl Med. 2012;10(1):50PubMedCrossRefGoogle Scholar
  4. 4.
    Tarantino G, Colicchio P, Conca P, et al. Young adult obese subjects with and without insulin resistance: what is the role of chronic inflammation and how to weigh it non-invasively? J Inflamm (Lond). 2009;6:6CrossRefGoogle Scholar
  5. 5.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–1638PubMedCrossRefGoogle Scholar
  6. 6.
    Donohoe CL, Doyle SL, Reynolds JV. Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr. 2011;3:12PubMedCrossRefGoogle Scholar
  7. 7.
    Freedland SJ, Platz EA. Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol Rev. 2007;29:88–97PubMedCrossRefGoogle Scholar
  8. 8.
    Protani M, Coory M, Martin JH. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat. 2010;123(3):627–635PubMedCrossRefGoogle Scholar
  9. 9.
    Kawai H, Nomoto M, Suda T, et al. Multicentric occurrence of hepatocellular carcinoma with non-alcoholic steatohepatitis. World J Hepatol. 2011;3(1):15–23PubMedGoogle Scholar
  10. 10.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–578PubMedCrossRefGoogle Scholar
  11. 11.
    Dignam JJ, Polite BN, Yothers G, et al. Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J Natl Cancer Inst. 2006;98:1647–1654PubMedCrossRefGoogle Scholar
  12. 12.
    Bandera EV, Kushi LH, Rodriguez-Rodriguez L. Nutritional factors in ovarian cancer survival. Nutr Cancer. 2009;61(5):580–586PubMedCrossRefGoogle Scholar
  13. 13.
    Chia VM, Newcomb PA, Trentham-Dietz A, Hampton JM. Obesity, diabetes, and other factors in relation to survival after endometrial cancer diagnosis. Int J Gynecol Cancer. 2007;17:441–446PubMedCrossRefGoogle Scholar
  14. 14.
    Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004;53:2087–2094PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen-Mansfield J, Perach R. Is there a reversal in the effect of obesity on mortality in old age? J Aging Res. 2011;2011:765071PubMedGoogle Scholar
  16. 16.
    Tarantino G, Lobello R, Scopacasa F, et al. The contribution of omental adipose tissue to adipokine concentrations in patients with the metabolic syndrome. Clin Invest Med. 2007;30(5):E192–E199PubMedGoogle Scholar
  17. 17.
    Selwyn AP (2007) Weight reduction and cardiovascular and metabolic disease prevention: clinical trial update. Am J Cardiol 100(12A):33P–37PGoogle Scholar
  18. 18.
    Tchkonia T, Morbeck DE, Von Zglinicki T, et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010;9(5):667–684PubMedCrossRefGoogle Scholar
  19. 19.
    Jenum AK, Diep LM, Holmboe-Ottesen G, et al. Diabetes susceptibility in ethnic minority groups from Turkey, Vietnam, Sri Lanka and Pakistan compared with Norwegians—the association with adiposity is strongest for ethnic minority women. BMC Pub Health. 2012;12:150CrossRefGoogle Scholar
  20. 20.
    Foster MC, Hwang SJ, Massaro JM, et al. Association of subcutaneous and visceral adiposity with albuminuria: the Framingham Heart Study. Obesity (Silver Spring). 2011;19(6):1284–1289CrossRefGoogle Scholar
  21. 21.
    Walker SP, Rimm EB, Ascherio A, et al. Body size and fat distribution as predictors of stroke among US men. Am J Epidemiol. 1996;144:1143–1150PubMedCrossRefGoogle Scholar
  22. 22.
    Nicklas BJ, Cesari M, Penninx BW, et al. Abdominal obesity is an independent risk factor for chronic heart failure in older people. J Am Geriatr Soc. 2006;54:413–420PubMedCrossRefGoogle Scholar
  23. 23.
    Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12(5):e426–e437PubMedCrossRefGoogle Scholar
  24. 24.
    Naderali EK, Ratcliffe SH, Dale MC. Obesity and Alzheimer’s disease: a link between body weight and cognitive function in old age. Am J Alzheimers Dis Other Demen. 2009;24(6):445–449PubMedCrossRefGoogle Scholar
  25. 25.
    Vincent HK, Vincent KR, Lamb KM. Obesity and mobility disability in the older adult. Obes Rev. 2010;11(8):568–579PubMedCrossRefGoogle Scholar
  26. 26.
    Benatti FB, Lira FS, Oyama LM, et al. Strategies for reducing body fat mass: effects of liposuction and exercise on cardiovascular risk factors and adiposity. Diabetes Metab Syndr Obes. 2011;4:141–154PubMedCrossRefGoogle Scholar
  27. 27.
    Mohammed BS, Cohen S, Reeds D, Young VL, Klein S. Long-term effects of large-volume liposuction on metabolic risk factors for coronary heart disease. Obesity. 2008;16(12):2648–2651PubMedCrossRefGoogle Scholar
  28. 28.
    Saleh Y, El-Oteify M, Abd-El-Salam AE, Tohamy A, Abd-Elsayed AA. Safety and benefits of large-volume liposuction: a single center experience. Int Arch Med. 2009;2(1):4PubMedCrossRefGoogle Scholar
  29. 29.
    Hong YG, Kim HT, Seo SW, et al. Impact of large-volume liposuction on serum lipids in orientals: a pilot study. Aesthetic Plast Surg. 2006;30(3):327–332PubMedCrossRefGoogle Scholar
  30. 30.
    Foster MT, Shi H, Seeley RJ, Woods SC. Transplantation or removal of intra-abdominal adipose tissue prevents age-induced glucose insensitivity. Physiol Behav. 2010;101(2):282–288PubMedCrossRefGoogle Scholar
  31. 31.
    Foster MT, Shi H, Seeley RJ, Woods SC. Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage. Physiol Behav. 2011;104(5):845–854PubMedCrossRefGoogle Scholar
  32. 32.
    Foster MT, Shi H, Softic S, et al. Transplantation of non-visceral fat to the visceral cavity improves glucose tolerance in mice: investigation of hepatic lipids and insulin sensitivity. Diabetologia. 2011;54(11):2890–2899PubMedCrossRefGoogle Scholar
  33. 33.
    Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350:2549–2557PubMedCrossRefGoogle Scholar
  34. 34.
    Davey Smith G, Sterne JA, Fraser A, et al. The association between BMI and mortality using offspring BMI as an indicator of own BMI: large intergenerational mortality study. BMJ. 2009;339:b5043PubMedCrossRefGoogle Scholar
  35. 35.
    Ryan AS. Exercise in aging: its important role in mortality, obesity and insulin resistance. Aging Health. 2010;6(5):551–563PubMedCrossRefGoogle Scholar
  36. 36.
    Bender R, Jöckel KH, Trautner C, Spraul M, Berger M. Effect of age on excess mortality in obesity. JAMA. 1999;281(16):1498–1504PubMedCrossRefGoogle Scholar
  37. 37.
    Wong ES, Wang BC, Garrison LP, et al. Examining the BMI–mortality relationship using fractional polynomials. BMC Med Res Methodol. 2011;11:175PubMedCrossRefGoogle Scholar
  38. 38.
    Finkelstein EA, Brown DS, Wrage LA, Allaire BT, Hoerger TJ. Individual and aggregate years-of-life-lost associated with overweight and obesity. Obesity (Silver Spring). 2010;18(2):333–339CrossRefGoogle Scholar
  39. 39.
    Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–664PubMedCrossRefGoogle Scholar
  40. 40.
    Boggs DA, Rosenberg L, Cozier YC, et al. General and abdominal obesity and risk of death among black women. N Engl J Med. 2011;365(10):901–908PubMedCrossRefGoogle Scholar
  41. 41.
    Price GM, Uauy R, Breeze E, et al. Weight, shape, and mortality risk in older persons: elevated waist-hip ratio, not high body mass index, is associated with a greater risk of death. Am J Clin Nutr. 2006;84(2):449–460PubMedGoogle Scholar
  42. 42.
    de Berrington Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–2219CrossRefGoogle Scholar
  43. 43.
    Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr. 2007;86:1339–1346PubMedGoogle Scholar
  44. 44.
    Pischon T, Boeing H, Hoffmann K, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(20):2105–2120PubMedCrossRefGoogle Scholar
  45. 45.
    Matsuzawa Y. The role of fat topology in the risk of disease. Int J Obes (Lond). 2008;32(Suppl 7):S83–S92CrossRefGoogle Scholar
  46. 46.
    Bays HE, González-Campoy JM, Bray GA, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–368PubMedCrossRefGoogle Scholar
  47. 47.
    Eglit T, Rajasalu T, Lember M. Metabolic syndrome in estonia: prevalence and associations with insulin resistance. Int J Endocrinol. 2012;2012:951672PubMedGoogle Scholar
  48. 48.
    Seidell JC. Waist circumference and waist/hip ratio in relation to all-cause mortality, cancer and sleep apnea. Eur J Clin Nutr. 2010;64(1):35–41PubMedCrossRefGoogle Scholar
  49. 49.
    Molenaar EA, Hwang SJ, Vasan RS, et al. Burden and rates of treatment and control of cardiovascular disease risk factors in obesity: the Framingham Heart Study. Diab Care. 2008;31:1367–1372CrossRefGoogle Scholar
  50. 50.
    Zheng Y, Stein R, Kwan T, et al. Evolving cardiovascular disease prevalence, mortality, risk factors, and the metabolic syndrome in China. Clin Cardiol. 2009;32(9):491–497PubMedCrossRefGoogle Scholar
  51. 51.
    Klein S, Allison DB, Heymsfield SB, et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity. 2007;15(5):1061–1067PubMedCrossRefGoogle Scholar
  52. 52.
    Look AHEAD Research Group. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial. Diabetes Care. 2007;30:1374–1383CrossRefGoogle Scholar
  53. 53.
    Ho ML, Brass SD. Obstructive sleep apnea. Neurol Int. 2011;3(3):e15PubMedGoogle Scholar
  54. 54.
    Garg R, Singh A, Prasad R, et al. A comparative study on the clinical and polysomnographic pattern of obstructive sleep apnea among obese and non-obese subjects. Ann Thorac Med. 2012;7(1):26–30PubMedCrossRefGoogle Scholar
  55. 55.
    Romero-Corral A, Caples SM, Lopez-Jimenez F, Somers VK. Interactions between obesity and obstructive sleep apnea: implications for treatment. Chest. 2010;137(3):711–719PubMedCrossRefGoogle Scholar
  56. 56.
    Vgontzas AN. Does obesity play a major role in the pathogenesis of sleep apnoea and its associated manifestations via inflammation, visceral adiposity, and insulin resistance? Arch Physiol Biochem. 2008;114(4):211–223PubMedCrossRefGoogle Scholar
  57. 57.
    Maurer JT (2008) Early diagnosis of sleep related breathing disorders. GMS Curr Top Otorhinolaryngol Head Neck Surg 7:Doc03Google Scholar
  58. 58.
    Whitelaw WA, Burgess KR. Diagnosis of sleep apnoea: some critical issues. Indian J Med Res. 2010;131:217–229PubMedGoogle Scholar
  59. 59.
    Farney RJ, Walker BS, Farney RM, Snow GL, Walker JM. The STOP-Bang equivalent model and prediction of severity of obstructive sleep apnea: relation to polysomnographic measurements of the apnea/hypopnea index. J Clin Sleep Med. 2011;7(5):459–465PubMedGoogle Scholar
  60. 60.
    Al Ghobain M. The effect of obesity on spirometry tests among healthy non-smoking adults. BMC Pulm Med. 2012;12:10PubMedCrossRefGoogle Scholar
  61. 61.
    Stadler DL, McEvoy RD, Sprecher KE, et al. Abdominal compression increases upper airway collapsibility during sleep in obese male obstructive sleep apnea patients. Sleep. 2009;32(12):1579–87PubMedGoogle Scholar
  62. 62.
    Kuk JL, Katzmarzyk PT, Nichaman MZ, et al. Visceral fat is an independent predictor of all-cause mortality in men. Obesity. 2006;14(2):336–341PubMedCrossRefGoogle Scholar
  63. 63.
    Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–887PubMedCrossRefGoogle Scholar
  64. 64.
    Fisher G, Hyatt TC, Hunter GR, et al. Effect of diet with and without exercise training on markers of inflammation and fat distribution in overweight women. Obesity. 2011;19(6):1131–1136PubMedCrossRefGoogle Scholar
  65. 65.
    Koster A, Stenholm S, Alley DE, et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity. 2010;18(12):2354–2361PubMedCrossRefGoogle Scholar
  66. 66.
    Kizer JR, Biggs ML, Ix JH, et al. Measures of adiposity and future risk of ischemic stroke and coronary heart disease in older men and women. Am J Epidemiol. 2011;173(1):10–25PubMedCrossRefGoogle Scholar
  67. 67.
    Obika M, Noguchi H. Diagnosis and evaluation of nonalcoholic fatty liver disease. Exp Diabetes Res. 2012;2012:145754PubMedCrossRefGoogle Scholar
  68. 68.
    Demerath EW, Reed D, Rogers N, et al. Visceral adiposity and its anatomical distribution as predictors of the metabolic syndrome and cardiometabolic risk factor levels. Am J Clin Nutr. 2008;88(5):1263–1271PubMedGoogle Scholar
  69. 69.
    Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506PubMedCrossRefGoogle Scholar
  70. 70.
    Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance. World J Gastroenterol. 2010;16(38):4773–4783PubMedCrossRefGoogle Scholar
  71. 71.
    Milner KL, van der Poorten D, Xu A, et al. Adipocyte fatty acid binding protein levels relate to inflammation and fibrosis in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1926–1934PubMedCrossRefGoogle Scholar
  72. 72.
    Hoenig MR, Cowin G, Buckley R, McHenery C, Coulthard A. Liver fat percent is associated with metabolic risk factors and the metabolic syndrome in a high-risk vascular cohort. Nutr Metab. 2010;7:50CrossRefGoogle Scholar
  73. 73.
    Hu HH, Nayak KS, Goran MI. Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging. Obes Rev. 2011;12(5):e504–e515PubMedCrossRefGoogle Scholar
  74. 74.
    Melino M, Gadd VL, Walker GV, et al. Macrophage secretory products induce an inflammatory phenotype in hepatocytes. World J Gastroenterol. 2012;18(15):1732–1744PubMedCrossRefGoogle Scholar
  75. 75.
    Mirza MS. Obesity, visceral fat, and NAFLD: querying the role of adipokines in the progression of nonalcoholic fatty liver disease. ISRN Gastroenterol. 2011;2011:592404PubMedGoogle Scholar
  76. 76.
    Gautier A, Bonnet F, Dubois S, et al. Associations between visceral adipose tissue, inflammation and sex steroid concentrations in men. Clin Endocrinol. 2012. doi: 10.1111/j.1365-2265.2012.04401.x Google Scholar
  77. 77.
    Gómez-Hernández A, Otero YF, de las N, et al. Brown fat lipoatrophy and increased visceral adiposity through a concerted adipocytokines overexpression induces vascular insulin resistance and dysfunction. Endocrinology. 2012;153(3):1242–1255PubMedCrossRefGoogle Scholar
  78. 78.
    Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J. Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism. 2011;60(3):313–326PubMedCrossRefGoogle Scholar
  79. 79.
    Misu H, Ishikura K, Kurita S, et al. Inverse correlation between serum levels of selenoprotein P and adiponectin in patients with type 2 diabetes. PLoS ONE. 2012;7(4):e34952PubMedCrossRefGoogle Scholar
  80. 80.
    Bu J, Feng Q, Ran J, et al. Visceral fat mass is always, but adipokines (adiponectin and resistin) are diversely associated with insulin resistance in Chinese type 2 diabetic and normoglycemic subjects. Diabetes Res Clin Pract. 2012;96(2):163–169PubMedCrossRefGoogle Scholar
  81. 81.
    Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675–1685PubMedCrossRefGoogle Scholar
  82. 82.
    Pais R, Moraru I, Ratziu V. Glitazones for human nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 2011;4(5):325–334PubMedCrossRefGoogle Scholar
  83. 83.
    Kim S, Cho B, Lee H, et al. Distribution of abdominal visceral and subcutaneous adipose tissue and metabolic syndrome in a Korean population. Diab Care. 2011;34(2):504–506CrossRefGoogle Scholar
  84. 84.
    Blum HE. Hepatocellular carcinoma: HCC. Hepat Mon. 2011;11(2):69–70PubMedGoogle Scholar
  85. 85.
    Shen B, Chu ES, Zhao G, et al. PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice. Br J Cancer. 2012;106(9):1486–1494PubMedCrossRefGoogle Scholar
  86. 86.
    Zhou Y, Si X, Wu L, et al. Influence of viral hepatitis status on prognosis in patients undergoing hepatic resection for hepatocellular carcinoma: a meta-analysis of observational studies. World J Surg Oncol. 2011;9:108PubMedCrossRefGoogle Scholar
  87. 87.
    Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56(6):1384–1391PubMedCrossRefGoogle Scholar
  88. 88.
    Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010;103(2):71–83PubMedCrossRefGoogle Scholar
  89. 89.
    Torres DM, Williams CD, Harrison SA. Features, diagnosis, and treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2012;10(8):837–858PubMedCrossRefGoogle Scholar
  90. 90.
    Tarantino G, Conca P, Sorrentino P, Ariello M. Metabolic factors involved in the therapeutic response of patients with hepatitis C virus-related chronic hepatitis. J Gastroenterol Hepatol. 2006;21(8):1266–1268PubMedCrossRefGoogle Scholar
  91. 91.
    Tarantino G, Citro V, Conca P, et al. What are the implications of the spontaneous spleno-renal shunts in liver cirrhosis? BMC Gastroenterol. 2009;9:89PubMedCrossRefGoogle Scholar
  92. 92.
    Bartolomeo N, Trerotoli P, Serio G. Progression of liver cirrhosis to HCC: an application of hidden Markov model. BMC Med Res Methodol. 2011;11:38PubMedCrossRefGoogle Scholar
  93. 93.
    Hamaguchi M, Takeda N, Kojima T, et al. Identification of individuals with non-alcoholic fatty liver disease by the diagnostic criteria for the metabolic syndrome. World J Gastroenterol. 2012;18(13):1508–1516PubMedCrossRefGoogle Scholar
  94. 94.
    Eguchi Y, Eguchi T, Mizuta T, et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. J Gastroenterol. 2006;41(5):462–469PubMedCrossRefGoogle Scholar
  95. 95.
    Gomaa AI, Khan SA, Leen EL, Waked I, Taylor-Robinson SD. Diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2009;15(11):1301–1314PubMedCrossRefGoogle Scholar
  96. 96.
    Qiu J, Huang P, Liu Q, et al. Identification of MACC1 as a novel prognostic marker in hepatocellular carcinoma. J Transl Med. 2011;9:166PubMedCrossRefGoogle Scholar
  97. 97.
    Ohki T, Tateishi R, Shiina S, et al. Obesity did not diminish the efficacy of percutaneous ablation for hepatocellular carcinoma. Liver Int. 2007;27(3):360–367PubMedCrossRefGoogle Scholar
  98. 98.
    Ghany MG, Lok AS, Everhart JE, et al. Predicting clinical and histologic outcomes based on standard laboratory tests in advanced chronic hepatitis C. Gastroenterology. 2010;138(1):136–146PubMedCrossRefGoogle Scholar
  99. 99.
    Giovannucci E, Michaud D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology. 2007;132(6):2208–2225PubMedCrossRefGoogle Scholar
  100. 100.
    Nussbaum T, Samarin J, Ehemann V, et al. Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis. Hepatology. 2008;48(1):146–156PubMedCrossRefGoogle Scholar
  101. 101.
    Cappellani A, Di Vita M, Zanghi A, et al. Diet, obesity and breast cancer: an update. Front Biosci. 2012;4:90–108Google Scholar
  102. 102.
    Wu MH, Chou YC, Chou WY, et al. Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer. 2009;100(4):578–582PubMedCrossRefGoogle Scholar
  103. 103.
    Harris HR, Willett WC, Terry KL, Michels KB. Body fat distribution and risk of premenopausal breast cancer in the Nurses’ Health Study II. J Natl Cancer Inst. 2011;103(3):273–278PubMedCrossRefGoogle Scholar
  104. 104.
    Erickson K, Patterson RE, Flatt SW, et al. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer. J Clin Oncol. 2011;29(1):54–60PubMedCrossRefGoogle Scholar
  105. 105.
    Kalyani RR, Franco M, Dobs AS, et al. The association of endogenous sex hormones, adiposity, and insulin resistance with incident diabetes in postmenopausal women. J Clin Endocrinol Metab. 2009;94:4127–4135PubMedCrossRefGoogle Scholar
  106. 106.
    Yeung EH, Zhang C, Hediger ML, Wactawski-Wende J, Schisterman EF. Racial differences in the association between sex hormone-binding globulin and adiposity in premenopausal women: the BioCycle study. Diab Care. 2010;33(10):2274–2276CrossRefGoogle Scholar
  107. 107.
    Cornford AS, Barkan AL, Horowitz JF. Rapid suppression of growth hormone concentration by overeating: potential mediation by hyperinsulinemia. J Clin Endocrinol Metab. 2011;96(3):824–830PubMedCrossRefGoogle Scholar
  108. 108.
    Troisi R, Potischman N, Johnson CN, et al. Estrogen and androgen concentrations are not lower in the umbilical cord serum of pre-eclamptic pregnancies. Cancer Epidemiol Biomarkers Prev. 2003;12(11 Pt 1):1268–1270PubMedGoogle Scholar
  109. 109.
    Gunter MJ, Hoover DR, Yu H, et al. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2009;101(1):48–60PubMedCrossRefGoogle Scholar
  110. 110.
    Endogenous Hormones and Breast Cancer Collaborative Group, Key TJ, Appleby PN, et al. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer. 2011;105(5):709–722PubMedCrossRefGoogle Scholar
  111. 111.
    Yu OK, Rhee YK, Park TS, Cha YS. Comparisons of obesity assessments in over-weight elementary students using anthropometry, BIA, CT and DEXA. Nutr Res Pract. 2010;4(2):128–135PubMedCrossRefGoogle Scholar
  112. 112.
    Sossa C, Delisle H, Agueh V, Makoutodé M, Fayomi B. Four-year trends in cardiometabolic risk factors according to baseline abdominal obesity status in West-African adults: the Benin Study. J Obes. 2012;2012:740854PubMedCrossRefGoogle Scholar
  113. 113.
    Green LE, Dinh TA, Smith RA. An estrogen model: the relationship between body mass index, menopausal status, estrogen replacement therapy, and breast cancer risk. Comput Math Methods Med. 2012;2012:792375PubMedCrossRefGoogle Scholar
  114. 114.
    von Drygalski A, Tran TB, Messer K, et al. Obesity is an independent predictor of poor survival in metastatic breast cancer: retrospective analysis of a patient cohort whose treatment included high-dose chemotherapy and autologous stem cell support. Int J Breast Cancer. 2011;2011:523276Google Scholar
  115. 115.
    Yilmaz N, Kilic S, Kanat-Pektas M, Gulerman C, Mollamahmutoglu L. The relationship between obesity and fecundity. J Womens Health. 2009;18(5):633–636CrossRefGoogle Scholar
  116. 116.
    Campagnoli C, Clavel-Chapelon F, Kaaks R, Peris C, Berrino F. Progestins and progesterone in hormone replacement therapy and the risk of breast cancer. J Steroid Biochem Mol Biol. 2005;96(2):95–108PubMedCrossRefGoogle Scholar
  117. 117.
    Ibiebele TI, Hughes MC, Pandeya N, et al. High intake of folate from food sources is associated with reduced risk of esophageal cancer in an Australian population. J Nutr. 2011;141(2):274–283PubMedCrossRefGoogle Scholar
  118. 118.
    Wiseman EF, Ang YS. Risk factors for neoplastic progression in Barrett’s esophagus. World J Gastroenterol. 2011;17(32):3672–3683PubMedCrossRefGoogle Scholar
  119. 119.
    Jessri M, Rashidkhani B, Hajizadeh B, Jessri M, Gotay C. Macronutrients, vitamins and minerals intake and risk of esophageal squamous cell carcinoma: a case–control study in Iran. Nutr J. 2011;10:137PubMedCrossRefGoogle Scholar
  120. 120.
    Atkinson M, Chak A. Screening for Barrett’s esophagus. Tech Gastrointest Endosc. 2010;12(2):62–66PubMedCrossRefGoogle Scholar
  121. 121.
    Ouchi N, Ohashi K, Shibata R, Murohara T. Adipocytokines and obesity-linked disorders. Nagoya J Med Sci. 2012;74(1–2):19–30PubMedGoogle Scholar
  122. 122.
    Gu W, Li Y. The therapeutic potential of the adiponectin pathway. BioDrugs. 2012;26(1):1–8PubMedCrossRefGoogle Scholar
  123. 123.
    Otvos L Jr, Haspinger E, La Russa F, et al. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol. 2011;11:90PubMedCrossRefGoogle Scholar
  124. 124.
    Li G, Cong L, Gasser J, et al. Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7-dependency on the cAMP/protein kinase-A pathway. Nutr Cancer. 2011;63(1):80–88PubMedGoogle Scholar
  125. 125.
    Kraus D, Winter J, Jepsen S, et al. Interactions of adiponectin and lipopolysaccharide from Porphyromonas gingivalis on human oral epithelial cells. PLoS One. 2012;7(2):e30716PubMedCrossRefGoogle Scholar
  126. 126.
    Lawrence JE, Cook NJ, Rovin RA, Winn RJ. Leptin promotes glioblastoma. Neurol Res Int. 2012;2012:870807PubMedGoogle Scholar
  127. 127.
    Grossmann ME, Ray A, Nkhata KJ, et al. Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev. 2010;29(4):641–653PubMedCrossRefGoogle Scholar
  128. 128.
    Tsukada T, Fushida S, Harada S, et al. Adiponectin receptor-1 expression is associated with good prognosis in gastric cancer. J Exp Clin Cancer Res. 2011;30:107PubMedCrossRefGoogle Scholar
  129. 129.
    Ma G, Tabanca N, Husnu Can Baser K, et al. Inhibition of NF-kappaB-mediated transcription and induction of apoptosis in human breast cancer cells by epoxypseudoisoeugenol-2-methyl butyrate. Cancer Chemother Pharmacol. 2009;63(4):673–680PubMedCrossRefGoogle Scholar
  130. 130.
    Jardé T, Perrier S, Vasson MP, Caldefie-Chézet F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer. 2011;47(1):33–43PubMedCrossRefGoogle Scholar
  131. 131.
    Macciò A, Madeddu C. Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications. Scientific World J. 2011;11:2020–2036CrossRefGoogle Scholar
  132. 132.
    Iannucci CV, Capoccia D, Calabria M, Leonetti F. Metabolic syndrome and adipose tissue: new clinical aspects and therapeutic targets. Curr Pharm Des. 2007;13(21):2148–2168PubMedCrossRefGoogle Scholar
  133. 133.
    Mammi C, Calanchini M, Antelmi A, et al. Androgens and adipose tissue in males: a complex and reciprocal interplay. Int J Endocrinol. 2012;2012:789653PubMedGoogle Scholar
  134. 134.
    Oxentenko AS, Bardia A, Vierkant RA, et al. Body size and incident colorectal cancer: a prospective study of older women. Cancer Prev Res (Phila). 2010;3(12):1608–1620CrossRefGoogle Scholar
  135. 135.
    Pischon T, Lahmann PH, Boeing H, et al. Body size and risk of colon and rectal cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2006;98(13):920–931PubMedCrossRefGoogle Scholar
  136. 136.
    Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev. 2007;16(12):2533–2547PubMedCrossRefGoogle Scholar
  137. 137.
    Mulholland HG, Murray LJ, Cardwell CR, Cantwell MM. Glycemic index, glycemic load, and risk of digestive tract neoplasms: a systematic review and meta-analysis. Am J Clin Nutr. 2009;89(2):568–576PubMedCrossRefGoogle Scholar
  138. 138.
    Mundi MS, Karpyak MV, Koutsari C, et al. Body fat distribution, adipocyte size, and metabolic characteristics of nondiabetic adults. J Clin Endocrinol Metab. 2010;95(1):67–73PubMedCrossRefGoogle Scholar
  139. 139.
    Lee CG, Fujimoto WY, Brunzell JD, et al. Intra-abdominal fat accumulation is greatest at younger ages in Japanese-American adults. Diabetes Res Clin Pract. 2010;89(1):58–64PubMedCrossRefGoogle Scholar
  140. 140.
    Kishida K, Funahashi T, Shimomura I. Clinical importance of assessment of type 2 diabetes mellitus with visceral obesity. A Japanese perspective. Curr Diab Rev. 2012;8(2):84–91CrossRefGoogle Scholar
  141. 141.
    Giouleme O, Diamantidis MD, Katsaros MG. Is diabetes a causal agent for colorectal cancer? Pathophysiological and molecular mechanisms. World J Gastroenterol. 2011;17(4):444–448PubMedCrossRefGoogle Scholar
  142. 142.
    Shen W, Wang Z, Punyanita M, et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res. 2003;11(1):5–16PubMedCrossRefGoogle Scholar
  143. 143.
    Cao Y, Ma J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res. 2011;4(4):486–501CrossRefGoogle Scholar
  144. 144.
    Stacewicz-Sapuntzakis M, Borthakur G, Burns JL, Bowen PE. Correlations of dietary patterns with prostate health. Mol Nutr Food Res. 2008;52(1):114–130PubMedCrossRefGoogle Scholar
  145. 145.
    Dimitropoulou P, Martin RM, Turner EL, et al. Association of obesity with prostate cancer: a case–control study within the population-based PSA testing phase of the ProtecT study. Br J Cancer. 2011;104(5):875–881PubMedCrossRefGoogle Scholar
  146. 146.
    Zuccolo L, Harris R, Gunnell D, et al. Height and prostate cancer risk: a large nested case–control study (ProtecT) and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2325–2336PubMedCrossRefGoogle Scholar
  147. 147.
    Joshu CE, Mondul AM, Menke A, et al. Weight gain is associated with an increased risk of prostate cancer recurrence after prostatectomy in the PSA era. Cancer Prev Res (Phila). 2011;4(4):544–551CrossRefGoogle Scholar
  148. 148.
    Nelson EC, Rodriguez RL, Dawson K, Galvez AF, Evans CP. The interaction of genetic polymorphisms with lifestyle factors: implications for the dietary prevention of prostate cancer. Nutr Cancer. 2008;60(3):301–312PubMedCrossRefGoogle Scholar
  149. 149.
    Shafique K, McLoone P, Qureshi K, et al. Cholesterol and the risk of grade-specific prostate cancer incidence: evidence from two large prospective cohort studies with up to 37 years’ follow up. BMC Cancer. 2012;12:25PubMedCrossRefGoogle Scholar
  150. 150.
    Leitzmann MF, Rohrmann S. Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clin Epidemiol. 2012;4:1–11PubMedGoogle Scholar
  151. 151.
    Lerro CC, McGlynn KA, Cook MB. A systematic review and meta-analysis of the relationship between body size and testicular cancer. Br J Cancer. 2010;103(9):1467–1474PubMedCrossRefGoogle Scholar
  152. 152.
    Renehan AG, Soerjomataram I, Leitzmann MF. Interpreting the epidemiological evidence linking obesity and cancer: a framework for population-attributable risk estimations in Europe. Eur J Cancer. 2010;46(14):2581–2592PubMedCrossRefGoogle Scholar
  153. 153.
    Baumgartner RN, Heymsfield SB, Roche AF, Bernardino M. Abdominal composition quantified by computed tomography. Am J Clin Nutr. 1998;48(4):936–945Google Scholar
  154. 154.
    Judex S, Luu YK, Ozcivici E, et al. Quantification of adiposity in small rodents using micro-CT. Methods. 2010;50(1):14–19PubMedCrossRefGoogle Scholar
  155. 155.
    Carter HB. Management of low (favourable)-risk prostate cancer. BJU Int. 2011;108(11):1684–1695PubMedCrossRefGoogle Scholar
  156. 156.
    Després JP. Health consequences of visceral obesity. Ann Med. 2001;33(8):534–541PubMedCrossRefGoogle Scholar
  157. 157.
    Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol. 2011;344(1–2):1–24PubMedCrossRefGoogle Scholar
  158. 158.
    Reynolds AR, Kyprianou N. Growth factor signalling in prostatic growth: significance in tumour development and therapeutic targeting. Br J Pharmacol. 2006;147(Suppl 2):S144–S152PubMedCrossRefGoogle Scholar
  159. 159.
    Rojas A, Liu G, Coleman I, et al. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene. 2011;30(20):2345–2355PubMedCrossRefGoogle Scholar
  160. 160.
    Albanes D, Weinstein SJ, Wright ME, et al. Serum insulin, glucose, indices of insulin resistance, and risk of prostate cancer. J Natl Cancer Inst. 2009;101(18):1272–1279PubMedCrossRefGoogle Scholar
  161. 161.
    Barnard RJ. Prostate cancer prevention by nutritional means to alleviate metabolic syndrome. Am J Clin Nutr. 2007;86(3):s889–s893PubMedGoogle Scholar
  162. 162.
    Gray A, Aronson WJ, Barnard RJ, et al. Global Igfbp1 deletion does not affect prostate cancer development in a c-Myc transgenic mouse model. J Endocrinol. 2011;211(3):297–304PubMedCrossRefGoogle Scholar
  163. 163.
    Xie L, O’Reilly CP, Chapes SK, Mora S. Adiponectin and leptin are secreted through distinct trafficking pathways in adipocytes. Biochim Biophys Acta. 2008;1782(2):99–108PubMedCrossRefGoogle Scholar
  164. 164.
    Nobusue H, Endo T, Kano K. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res. 2008;332(3):435–446PubMedCrossRefGoogle Scholar
  165. 165.
    Garonna E, Botham KM, Birdsey GM, et al. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One. 2011;6(4):e18823PubMedCrossRefGoogle Scholar
  166. 166.
    Park MJ, Park SH, Lee SK, et al. Expression of SDF-1α and leptin, and their effect on expression of angiogenic factors in mouse ovaries. Clin Exp Reprod Med. 2011;38(3):135–141PubMedCrossRefGoogle Scholar
  167. 167.
    Burton AJ, Tilling KM, Holly JM, et al. Metabolic imbalance and prostate cancer progression. Int J Mol Epidemiol Genet. 2010;1(4):248–271PubMedGoogle Scholar
  168. 168.
    Chang S, Hursting SD, Contois JH. Leptin and prostate cancer. Prostate. 2001;46(1):62–67PubMedCrossRefGoogle Scholar
  169. 169.
    Hube F, Lietz U, Igel M, et al. Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. Horm Metab Res. 1996;28(12):690–693PubMedCrossRefGoogle Scholar
  170. 170.
    Rönnemaa T, Karonen SL, Rissanen A, Koskenvuo M, Koivisto VA. Relation between plasma leptin levels and measures of body fat in identical twins discordant for obesity. Ann Intern Med. 1997;126(1):26–31PubMedCrossRefGoogle Scholar
  171. 171.
    Kaaks R, Lukanova A. Effects of weight control and physical activity in cancer prevention: role of endogenous hormone metabolism. Ann N Y Acad Sci. 2002;963:268–281PubMedCrossRefGoogle Scholar
  172. 172.
    Harriss DJ, Atkinson G, George K, et al. Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Colorectal Dis. 2009;11(6):547–563PubMedCrossRefGoogle Scholar
  173. 173.
    Rapp K, Klenk J, Ulmer H, et al. Weight change and cancer risk in a cohort of more than 65,000 adults in Austria. Ann Oncol. 2008;19(4):641–648PubMedCrossRefGoogle Scholar
  174. 174.
    Dorman RB, Miller CJ, Leslie DB, et al. Risk for hospital readmission following bariatric surgery. PLoS One. 2012;7(3):e32506PubMedCrossRefGoogle Scholar
  175. 175.
    Sjöström L, Narbro K, Sjöström CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–752PubMedCrossRefGoogle Scholar
  176. 176.
    Sjöström L, Gummesson A, Sjöström CD, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10(7):653–662PubMedCrossRefGoogle Scholar
  177. 177.
    Perry CD, Hutter MM, Smith DB, Newhouse JP, McNeil BJ. Survival and changes in comorbidities after bariatric surgery. Ann Surg. 2008;247(1):21–27PubMedCrossRefGoogle Scholar
  178. 178.
    Sjöström L. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int J Obes. 2008;32(Suppl 7):S93–S97CrossRefGoogle Scholar
  179. 179.
    Sedlacek SM, Playdon MC, Wolfe P, et al. Effect of a low fat versus a low carbohydrate weight loss dietary intervention on biomarkers of long term survival in breast cancer patients (‘CHOICE’): study protocol. BMC Cancer. 2011;11:287PubMedCrossRefGoogle Scholar
  180. 180.
    Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–761PubMedCrossRefGoogle Scholar
  181. 181.
    Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65PubMedCrossRefGoogle Scholar
  182. 182.
    Flum DR, Salem L, Elrod JA, et al. Early mortality among Medicare beneficiaries undergoing bariatric surgical procedures. JAMA. 2005;294(15):1903–1908PubMedCrossRefGoogle Scholar
  183. 183.
    Picot J, Jones J, Colquitt JL, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess 2009;13(41):1–190, 215–357, iii–ivGoogle Scholar
  184. 184.
    Christou NV. Impact of obesity and bariatric surgery on survival. World J Surg. 2009;33(10):2022–2027PubMedCrossRefGoogle Scholar
  185. 185.
    Tannenbaum A. The genesis and growth of tumors. II. Effects of caloric restriction per se. Cancer Res. 1942;2:460–464Google Scholar
  186. 186.
    Tannenbaum A, Silverstone H. The genesis and growth of tumors. VI. Effects of varying the level of minerals in the diet. Cancer Res. 1953;13(6):460–463PubMedGoogle Scholar
  187. 187.
    Tannenbaum A, Silverstone H. The influence of the degree of caloric restriction on the formation of skin tumors and hepatomas in mice. Cancer Res. 1949;9(12):724–727PubMedGoogle Scholar
  188. 188.
    Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J. 2011;10:107PubMedCrossRefGoogle Scholar
  189. 189.
    Masoro EJ. Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms. Biochim Biophys Acta. 2009;1790(10):1040–1048PubMedCrossRefGoogle Scholar
  190. 190.
    Pugh TD, Klopp RG, Weindruch R. Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiol Aging. 1999;20:157–165PubMedCrossRefGoogle Scholar
  191. 191.
    Bruss MD, Thompson AC, Aggarwal I, Khambatta CF, Hellerstein MK. The effects of physiological adaptations to calorie restriction on global cell proliferation rates. Am J Physiol Endocrinol Metab. 2011;300(4):E735–E745PubMedCrossRefGoogle Scholar
  192. 192.
    Speakman JR. Body size, energy metabolism and lifespan. J Exp Biol. 2005;208(Pt 9):1717–1730PubMedCrossRefGoogle Scholar
  193. 193.
    Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299:572–574PubMedCrossRefGoogle Scholar
  194. 194.
    Shimokawa I, Chiba T, Yamaza H, Komatsu T. Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells. 2008;26(5):427–435PubMedGoogle Scholar
  195. 195.
    Harrison DE, Archer JR, Astle CM. Effects of food restriction on aging: separation of food intake and adiposity. Proc Natl Acad Sci USA. 1984;81:1835–1838PubMedCrossRefGoogle Scholar
  196. 196.
    Berg BN, Simms HS. Nutrition and longevity in the rat. II. Longevity and onset of disease with different levels of food intake. J Nutr. 1960;71:255–263PubMedGoogle Scholar
  197. 197.
    Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432PubMedCrossRefGoogle Scholar
  198. 198.
    Smith DL Jr, Nagy TR, Allison DB. Calorie restriction: what recent results suggest for the future of ageing research. Eur J Clin Invest. 2010;40(5):440–450PubMedCrossRefGoogle Scholar
  199. 199.
    Macciò A, Madeddu C. Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications. Sci World J. 2011;11:2020–2036CrossRefGoogle Scholar
  200. 200.
    Frankenberry KA, Somasundar P, McFadden DW, Vona-Davis LC. Leptin induces cell migration and the expression of growth factors in human prostate cancer cells. Am J Surg. 2004;188:560–565PubMedCrossRefGoogle Scholar
  201. 201.
    Cummings BP, Bettaieb A, Graham JL, et al. Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. Proc Natl Acad Sci USA. 2011;108(35):14670–14675PubMedCrossRefGoogle Scholar
  202. 202.
    Veyrat-Durebex C, Deblon N, Caillon A, et al. Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. PLoS One. 2012;7(3):e34002PubMedCrossRefGoogle Scholar
  203. 203.
    Michailidou Z, Turban S, Miller E, et al. Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11β-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice. J Biol Chem. 2012;287(6):4188–4197PubMedCrossRefGoogle Scholar
  204. 204.
    Hermanowski-Vosatka A, Balkovec JM, Cheng K, et al. 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med. 2005;202:517–527PubMedCrossRefGoogle Scholar
  205. 205.
    Ohman MK, Shen Y, Obimba CI, et al. Visceral adipose tissue inflammation accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2008;117:798–805PubMedCrossRefGoogle Scholar
  206. 206.
    Tamura Y, Sugimoto M, Murayama T, et al. C–C chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb. 2010;17(3):219–228PubMedCrossRefGoogle Scholar
  207. 207.
    Finelli C, Tarantino G. Have guidelines addressing physical activity been established in nonalcoholic fatty liver disease? World J Gastroenterol.Google Scholar
  208. 208.
    Harrington M, Gibson S, Cottrell RC. A review and meta-analysis of the effect of weight loss on all-cause mortality risk. Nutr Res Rev. 2009;22(1):93–108PubMedCrossRefGoogle Scholar
  209. 209.
    Finelli C, Tarantino G. Is visceral fat reduction necessary to favour metabolic changes in the liver? J Gastrointestin Liver Dis. 2012;21(2):205–208PubMedGoogle Scholar
  210. 210.
    Tarantino G, Conca P, Basile V, et al. A prospective study of acute drug-induced liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatol Res. 2007;37(6):410–415PubMedCrossRefGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2012

Authors and Affiliations

  1. 1.Center of Obesity and Eating DisorderStella Maris Mediterraneo Foundation ChiaromontePotenzaItaly
  2. 2.Department of Clinical and Experimental MedicineFederico II University Medical School of NaplesNaplesItaly

Personalised recommendations