Hepatology International

, Volume 7, Issue 1, pp 28–47

Etiopathogenesis of primary biliary cirrhosis: an overview of recent developments

Review Article

Abstract

Substantial advancements in the field of primary biliary cirrhosis (PBC) research have broadened our understanding of this enigmatic disease. Genome-wide studies have identified several new candidate genes involved in the immunoregulatory process, particularly those responsible for antigen presentation and lymphocyte signaling. Examples include the HLA class-II region and genes implicated in IL12-JAK/STAT signaling, and the NF-κB and TNF signaling pathways. Environmental triggers appear to disrupt the pre-existing, unstable immune tolerance in genetically susceptible individuals, and molecular mimics of the PBC-specific autoantigen (PDC) may be derived from microbes or xenobiotic compounds, which modify native proteins, making them immunogenic. Although the vast majority of patients with PBC are AMA-positive, a variety of disease-specific antinuclear antibodies have been recognized in conferring a worse clinical outcome. There has also been a revived interest in the role of antibody-secreting B cells in murine models suggesting that depletion of these cells paradoxically exacerbates cholangiopathy. Biliary specificity in PBC is most likely driven by the uniqueness of cholangiocyte apoptosis in which the PDC-E2 autoantigen undergoes differential glutathiolation. Cholangiocytes also possess the ability to phagocytose neighboring apoptotic cells, present intact immunoreactive antigen, and undergo attack from autoantibodies, the innate immune system, and autoreactive lymphocytes. Cellular senescence and a lack of functioning T-regulatory cells are proposed mechanisms by which this multi-lineage process is thought to be enhanced. This review summarizes these key advances as the true complexities of the disease process begin to be unraveled.

Keywords

Apoptosis Autoantibodies Genetics Animal models Molecular mimicry Immunopathogenesis Cholestasis 

References

  1. 1.
    Corpechot C, Gaouar F, Salle AV, et al. Epidemiology of primary biliary cirrhosis: Results of a prospective study performed on the overall metropolitan French population. [Abstract] Hepatology 2008;48(602A)Google Scholar
  2. 2.
    Prince MI, James OF. The epidemiology of primary biliary cirrhosis. Clin Liver Dis 2003;7(4):795–819CrossRefPubMedGoogle Scholar
  3. 3.
    Inoue K, Hirohara J, Nakano T, et al. Prediction of prognosis of primary biliary cirrhosis in Japan. Liver 1995;15:70–77CrossRefPubMedGoogle Scholar
  4. 4.
    Watson RG, Angus PW, Dewar M, et al. Low prevalence of primary biliary cirrhosis in Victoria, Australia. Melbourne Liver Group. Gut 1995;36(6):927–930CrossRefPubMedGoogle Scholar
  5. 5.
    Sood S, Gow PJ, Christie JM, et al. Epidemiology of primary biliary cirrhosis in Victoria, Australia: high prevalence in migrant populations. Gastroenterology 2004;127(2):470–475CrossRefPubMedGoogle Scholar
  6. 6.
    Selmi C, Mayo MJ, Bach N, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004;127:485–492CrossRefPubMedGoogle Scholar
  7. 7.
    Corpechot C, Chrétien Y, Chazouillères O, et al. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol 2010;53(1):162–169CrossRefPubMedGoogle Scholar
  8. 8.
    Liang Y, Yang Z, Zhong R. Smoking, family history and urinary tract infection are associated with primary biliary cirrhosis: a meta-analysis. Hepatol Res 2011;41(6):572–578CrossRefPubMedGoogle Scholar
  9. 9.
    Gershwin ME, Selmi C, Worman HJ, USA PBC Epidemiology Group, et al. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 2005;42:1194–1202CrossRefPubMedGoogle Scholar
  10. 10.
    Donaldson PT, Baragiotta A, Heneghan MA, et al. HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology 2006;44(3):667–674CrossRefPubMedGoogle Scholar
  11. 11.
    Mullarkey ME, Stevens AM, McDonnell WM, et al. Human leukocyte antigen class II alleles in Caucasian women with primary biliary cirrhosis. Tissue Antigens 2005;65(2):199–205CrossRefPubMedGoogle Scholar
  12. 12.
    Stone J, Wade JA, Cauch-Dudek K, et al. Human leukocyte antigen Class II associations in serum anti-mitochondrial antibodies (AMA)-positive and AMA-negative primary biliary cirrhosis. J Hepatol 2002;36(1):8–13CrossRefPubMedGoogle Scholar
  13. 13.
    Onishi S, Sakamaki T, Maeda T, et al. DNA typing of HLA class II genes: DRB1*0803 increases the susceptibility of Japanese to primary biliary cirrhosis. J Hepatol 1994;21(6):1053–1060CrossRefPubMedGoogle Scholar
  14. 14.
    Liu HY, Deng AM, Zhou Y, et al. Analysis of HLA alleles polymorphism in Chinese patients with primary biliary cirrhosis. Hepatobiliary Pancreat Dis Int 2006;5(1):129–132PubMedGoogle Scholar
  15. 15.
    Oguri H, Oba S, Ogino H, et al. Susceptibility to primary biliary cirrhosis is associated with human leucocyte antigen DRB1*0803 in Japanese patients. Int Hepatol Comm 1994;2:263–270CrossRefGoogle Scholar
  16. 16.
    Umemura T, Joshita S, Ichijo T, et al.; The Shinshu PBC Study Group. HLA class II molecules confer both susceptibility and progression in Japanese patients with primary biliary cirrhosis. Hepatology 2011. doi:10.1002/hep.24705 [Epub ahead of print]
  17. 17.
    Begovich AB, Klitz W, Moonsamy PV, et al. Genes within the HLA class II region confer both predisposition and resistance to primary biliary cirrhosis. Tissue Antigens 1994;43(2):71–77CrossRefPubMedGoogle Scholar
  18. 18.
    Hirschfield GM, Liu X, Xu C, et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 2009;360(24):2544–2555CrossRefPubMedGoogle Scholar
  19. 19.
    Liu X, Invernizzi P, Lu Y, et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010;42(8):658–660CrossRefPubMedGoogle Scholar
  20. 20.
    Mells GF, Floyd JA, Morley KI, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 2011;43(4):329–332CrossRefPubMedGoogle Scholar
  21. 21.
    Hirschfield GM, Liu X, Han Y, et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet 2010;42(8):655–657CrossRefPubMedGoogle Scholar
  22. 22.
    Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 2006;18:347–361CrossRefPubMedGoogle Scholar
  23. 23.
    Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009;41:703–707 (Type 1 Diabetes Genetics Consortium)CrossRefPubMedGoogle Scholar
  24. 24.
    Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008;40:955–962CrossRefPubMedGoogle Scholar
  25. 25.
    Elsharkawy AM, Oakley F, Lin F, et al. The NF-kappaB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol 2010;53(3):519–527CrossRefPubMedGoogle Scholar
  26. 26.
    Ananieva O, Darragh J, Johansen C, et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signalling. Nat Immunol 2008;9(9):1028–1036CrossRefPubMedGoogle Scholar
  27. 27.
    Aiba Y, Nakamura M, Joshita S, PBC Study Group in NHOSLJ, et al. Genetic polymorphisms in CTLA4 and SLC4A2 are differentially associated with the pathogenesis of primary biliary cirrhosis in Japanese patients. J Gastroenterol 2011;46(10):1203–1212CrossRefPubMedGoogle Scholar
  28. 28.
    Tanaka A, Invernizzi P, Ohira H, et al. Replicated association of 17q12-21 with susceptibility of primary biliary cirrhosis in a Japanese cohort. Tissue Antigens 2011;78(1):65–68CrossRefPubMedGoogle Scholar
  29. 29.
    Jin Q, Moritoki Y, Lleo A, et al. Comparative analysis of portal cell infiltrates in AMA positive versus AMA negative PBC. Hepatology 2011 [Epub ahead of print]. doi:10.1002/hep.25511
  30. 30.
    Gleicher N, Barad DH. Gender as risk factor for autoimmune diseases. J Autoimmun 2007;28(1):1–6CrossRefPubMedGoogle Scholar
  31. 31.
    Invernizzi P, Miozzo M, Battezzati PM, et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet 2004;363(9408):533–535CrossRefPubMedGoogle Scholar
  32. 32.
    Miozzo M, Selmi C, Gentilin B, et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology 2007;46:456–462CrossRefPubMedGoogle Scholar
  33. 33.
    Mitchell MM, Lleo A, Zammataro L, et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 2011;6(1):95–102CrossRefPubMedGoogle Scholar
  34. 34.
    Ala A, Stanca CM, Bu-Ghanim M, et al. Increased prevalence of primary biliary cirrhosis near superfund toxic waste sites. Hepatology 2006;43:525–531CrossRefPubMedGoogle Scholar
  35. 35.
    Smyk DS, Bogdanos DP, Kriese S, et al. Urinary tract infection as a risk factor for autoimmune liver disease: From bench to bedside. Clin Res Hepatol Gastroenterol 2011 [Epub ahead of print]Google Scholar
  36. 36.
    Jones DE, James OF, Bassendine MF. Primary biliary cirrhosis: clinical and associated autoimmune features and natural history. Clin Liver Dis 1998;2:265–282 (viii)CrossRefPubMedGoogle Scholar
  37. 37.
    Jones DE, Watt FE, Metcalf JV, et al. Familial primary biliary cirrhosis reassessed: a geographically-based population study. J Hepatol 1999;30:402–407CrossRefPubMedGoogle Scholar
  38. 38.
    Mason A, Zhang G. Linking human betaretrovirus infection with primary biliary cirrhosis. Clin Res Hepatol Gastroenterol 2010;34:359–366Google Scholar
  39. 39.
    Howel D, Fischbacher CM, Bhopal RS, et al. An exploratory population-based case-control study of primary biliary cirrhosis. Hepatology 2000;31:1055–1060CrossRefPubMedGoogle Scholar
  40. 40.
    Ballot E, Bandin O, Chazouilleres O, et al. Immune response to lipopolysaccharide in primary biliary cirrhosis and autoimmune diseases. J Autoimmun 2004;22(2):153–158CrossRefPubMedGoogle Scholar
  41. 41.
    Berg CP, Kannan TR, Klein R, et al. Mycoplasma antigens as a possible trigger for the induction of antimitochondrial antibodies in primary biliary cirrhosis. Liver Int 2009;29:797–809CrossRefPubMedGoogle Scholar
  42. 42.
    Hopf U, Möller B, Stemerowicz R, et al. Relation between Escherichia coli R(rough)-forms in gut, lipid A in liver, and primary biliary cirrhosis. Lancet 1989;2(8677):1419–1422CrossRefPubMedGoogle Scholar
  43. 43.
    Bogdanos DP, Baum H, Grasso A, et al. Microbial mimics are major targets of cross-reactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 2004;40:31–39CrossRefPubMedGoogle Scholar
  44. 44.
    Bogdanos DP, Baum H, Butler P, et al. Association between the primary biliary cirrhosis specific anti-sp100 antibodies and recurrent urinary tract infection. Dig Liver Dis 2003;35(11):801–855CrossRefPubMedGoogle Scholar
  45. 45.
    Selmi C, Balkwill DL, Invernizzi P, et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 2003;38:1250–1257CrossRefPubMedGoogle Scholar
  46. 46.
    Mattner J, Savage PB, Leung P, et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008;3:304–315CrossRefPubMedGoogle Scholar
  47. 47.
    Corpechot C, Tankovic J, Gaouar F, et al. Lack of molecular evidence for the presence of Novosphingobium aromaticivorans at the early stages of primary biliary cirrhosis. J Hepatol 2010;52(5):S319–S457 (suppl)Google Scholar
  48. 48.
    Sadamoto T, Joplin R, Keogh A, et al. Expression of pyruvate-dehydrogenase complex PDC-E2 on biliary epithelial cells induced by lymph nodes from primary biliary cirrhosis. Lancet 1998;352(9140):1595–1596CrossRefPubMedGoogle Scholar
  49. 49.
    Xu L, Shen Z, Guo L, et al. Does a betaretrovirus infection trigger primary biliary cirrhosis? Proc Natl Acad Sci USA 2003;100:8454–8459CrossRefPubMedGoogle Scholar
  50. 50.
    Mason AL. The evidence supports a viral aetiology for primary biliary cirrhosis. J Hepatol 2011;54(6):1312–1314CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang G, Chen M, Graham D, et al. Mouse mammary tumour virus in antimitochondrial antibody producing mouse models. J Hepatol 2011;55(4):876–884CrossRefPubMedGoogle Scholar
  52. 52.
    Montano-Loza AJ, Wasilenko S, Bintner J, et al. Cyclosporine A inhibits in vitro replication of betaretrovirus associated with primary biliary cirrhosis. Liver Int 2010;30:871–877CrossRefPubMedGoogle Scholar
  53. 53.
    Mason A, Xu L, Guo L, et al. Detection of retroviral antibodies in primary biliary cirrhosis and other idiopathic biliary disorders. Lancet 1998;351:1620–1624CrossRefPubMedGoogle Scholar
  54. 54.
    Selmi C, Gershwin ME. The retroviral myth of primary biliary cirrhosis: Is this (finally) the end of the story. J Hepatol 2009;51:411–412CrossRefGoogle Scholar
  55. 55.
    Johal H, Scott GM, Jones R, et al. Mouse mammary tumour virus-like virus (MMTC-LV) is present within the liver in a wide range of hepatic dosriders and unrelated to nuclear p53 expression of hepatocarcinogenesis. J Hepatol 2009;50:548–554CrossRefPubMedGoogle Scholar
  56. 56.
    Selmi C, Ross SR, Ansari AA, et al. Lack of immunological or molecular evidence for a role of mouse mammary tumor retrovirus in primary biliary cirrhosis. Gastroenterology 2004;127:493–501CrossRefPubMedGoogle Scholar
  57. 57.
    Mason AL, Farr GH, Xu L, et al. Pilot studies of single and combination antiretroviral therapy in patients with primary biliary cirrhosis. Am J Gastroenterol 2004;99(12):2348–2355CrossRefPubMedGoogle Scholar
  58. 58.
    Mason AL, Lindor KD, Bacon BR, et al. Clinical trial: randomized controlled trial of zidovudine and lamivudine for patients with primary biliary cirrhosis stabilized on ursodiol. Aliment Pharmacol Ther 2008;28(7):886–894CrossRefGoogle Scholar
  59. 59.
    Walden HR, Kirby JA, Yeaman SJ, et al. Xenobiotic incorporation into pyruvate dehydrogenase complex can occur via the exogenous lipoylation pathway. Hepatology 2008;48:1874–1884CrossRefPubMedGoogle Scholar
  60. 60.
    Rieger R, Leung PS, Jeddeloh MR, et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J Autoimmun 2006;27:7–16CrossRefPubMedGoogle Scholar
  61. 61.
    Corpechot C, Gaouar F, Chrétien Y, et al. Smoking as an independent risk factor of liver fibrosis in primary biliary cirrhosis. J Hepatol 2011 [Epub ahead of print]Google Scholar
  62. 62.
    Isse K, Specht SM, Lunz JG 3rd, et al. Estrogen stimulates female biliary epithelial cell interleukin-6 expression in mice and humans. Hepatology 2010;51(3):869–880CrossRefPubMedGoogle Scholar
  63. 63.
    Alvaro D, Invernizzi P, Onori P, et al. Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. J Hepatol 2004;41(6):905–912CrossRefPubMedGoogle Scholar
  64. 64.
    Watt FE, James OF, Jones DE. Patterns of autoimmunity in primary biliary cirrhosis patients and their families: a population-based cohort study. QJM 2004;97(7):397–406CrossRefPubMedGoogle Scholar
  65. 65.
    Rigamonti C, Shand LM, Feudjo M, et al. Clinical features and prognosis of primary biliary cirrhosis associated with systemic sclerosis. Gut 2006;55(3):388–394CrossRefPubMedGoogle Scholar
  66. 66.
    Dörner T, Held C, Trebeljahr G, et al. Serologic characteristics in primary biliary cirrhosis associated with sicca syndrome. Scand J Gastroenterol 1994;29:655CrossRefPubMedGoogle Scholar
  67. 67.
    Berg PA, Klein R, Lindenborn-Fotinos J, et al. ATPase-associated antigen (M2): marker antigen for serological diagnosis of primary biliary cirrhosis. Lancet 1982;2(8313):1423–1426CrossRefPubMedGoogle Scholar
  68. 68.
    Fussey SP, Guest JR, James OF, et al. Identification and analysis of the major M2 autoantigens in primary biliary cirrhosis. Proc Natl Acad Sci USA 1988;85(22):8654–8658CrossRefPubMedGoogle Scholar
  69. 69.
    Fukushima N, Nalbandian G, Van De Water J, et al. Characterization of recombinant monoclonal IgA anti-PDC-E2 autoantibodies derived from patients with PBC. Hepatology 2002;36:1383–1392PubMedGoogle Scholar
  70. 70.
    Masuda J, Omagari K, Ohba K, et al. Correlation between histopathological findings of the liver and IgA class antibodies to 2-oxo-acid dehydrogenase complex in primary biliary cirrhosis Dig Dis Sci. 2003;48:932–938CrossRefPubMedGoogle Scholar
  71. 71.
    Matsumura S, Van De Water J, Leung P, et al. Caspase induction by IgA antimitochondrial antibody: IgA-mediated biliary injury in primary biliary cirrhosis. Hepatology 2004;39:1415–1422CrossRefPubMedGoogle Scholar
  72. 72.
    Takahashi T, Miura T, Nakamura J, et al. Plasma cells and the chronic nonsuppurative destructive cholangitis of primary biliary cirrhosis. Hepatology 2011 [Epub ahead of print]. doi:10.1002/hep.24757
  73. 73.
    Berg CP, Blume K, Lauber K, et al. Autoantibodies to muscarinic acetylcholine receptors found in patients with primary biliary cirrhosis. BMC Gastroenterol 2010;10:120CrossRefPubMedGoogle Scholar
  74. 74.
    Budd DC, Spragg EJ, Ridd K, et al. Signalling of the M3-muscarinic receptor to the anti-apoptotic pathway. Biochem J 2004;381:43–49CrossRefPubMedGoogle Scholar
  75. 75.
    Harada K, Isse K, Nakanuma Y. Interferon gamma accelerates NF-kappa B activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol 2006;59:184–190CrossRefPubMedGoogle Scholar
  76. 76.
    Odin JA, Huebert RC, Casciola-Rosen L, et al. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 2001;108(2):223–232PubMedGoogle Scholar
  77. 77.
    Lleo A, Bowlus CL, Yang GX, et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010;52:987–998CrossRefPubMedGoogle Scholar
  78. 78.
    Lleo A, Selmi C, Invernizzi P, et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 2009;49:871–879CrossRefPubMedGoogle Scholar
  79. 79.
    Takeda K, Kojima Y, Ikejima K, et al. Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci USA 2008;105:10895–10900CrossRefPubMedGoogle Scholar
  80. 80.
    Allina J, Hu B, Sullivan DM, et al. T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 2006;27(4):232–241CrossRefPubMedGoogle Scholar
  81. 81.
    Savill J, Dransfield I, Gregory C, et al. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2002;2:965–975CrossRefPubMedGoogle Scholar
  82. 82.
    Chamulitrat W, Burhenne J, Rehlen T, et al. Bile salt-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide as a hepatoprotective agent. Hepatology 2009;50:143–154CrossRefPubMedGoogle Scholar
  83. 83.
    Amaral JD, Viana RJ, Ramalho RM, et al. Bile acids: Regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 2009;50:1721–1734CrossRefPubMedGoogle Scholar
  84. 84.
    Inamura K, Tsuji H, Nakamoto Y, et al. Transgenic mice aberrantly expressing pyruvate dehydrogenase complex E2 component on biliary epithelial cells do not show primary biliary cirrhosis. Clin Exp Immunol 2006;145:93–100CrossRefPubMedGoogle Scholar
  85. 85.
    Tsuneyama K, Van de Water J, Leung PS, et al. Abnormal expression of the E2 component of the pyruvate dehydrogenase complex on the luminal surface of biliary epithelium occurs before major histocompatibility complex class II and BB1/B7 expression. Hepatology 1995;21:1031–1037PubMedGoogle Scholar
  86. 86.
    Ballardini G, Guidi M, Susca M, et al. Bile duct cell apoptosis is a rare event in primary biliary cirrhosis. Dig Liver Dis 2001;33:151–156CrossRefPubMedGoogle Scholar
  87. 87.
    Onori P, Alvaro A, Floreani A, et al. Activation of the IGF1 system characterizes cholangiocyte survival during progression of primary biliary cirrhosis. J Histochem Cytochem 2007;55(4):327–334CrossRefPubMedGoogle Scholar
  88. 88.
    Sasaki M, Nakanuma Y. Novel approach to bile duct damage in primary biliary cirrhosis: participation of cellular senescence and autophagy. Int J Hepatol 2012;2012:452143 (Epub 2011 Jul 7)PubMedGoogle Scholar
  89. 89.
    Sasaki M, Miyakoshi M, Sato Y, et al. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol 2010;53(2):318–325CrossRefPubMedGoogle Scholar
  90. 90.
    Sasaki M, Ikeda H, Haga H, et al. Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol 2005;205(4):451–459CrossRefPubMedGoogle Scholar
  91. 91.
    Lunz JG, Contrucci S, Ruppert K. Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21 as a disease marker and the influence of immunosuppressive drugs. Am J Pathol 2001;158(4):1379–1390CrossRefPubMedGoogle Scholar
  92. 92.
    International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN), Harley JB, Alarcón-Riquelme ME, Criswell LA, et al. Genome-wide association scan in women with systemic lupus erythematosis identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008;40(2):204–210CrossRefPubMedGoogle Scholar
  93. 93.
    Sasaki M, Miyakoshi M, Sato Y, et al. Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Invest 2010;90(6):835–843CrossRefPubMedGoogle Scholar
  94. 94.
    Mao TK, Lian ZX, Selmi C, et al. Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology 2005;42:802–808CrossRefPubMedGoogle Scholar
  95. 95.
    Wang AP, Migita K, Ito M, et al. Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun 2005;25:85–89CrossRefPubMedGoogle Scholar
  96. 96.
    Harada K, Ohira S, Isse K, et al. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab Invest 2003;83:1657–1667CrossRefPubMedGoogle Scholar
  97. 97.
    Faure E, Thomas L, Xu H, et al. Bacterial lipopolysaccharide and IFN-gamma induce toll-like receptor 2 and toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 2001;166:2018–2024PubMedGoogle Scholar
  98. 98.
    Moritoki Y, Lian ZX, Wulff H, et al. AMA production in primary biliary cirrhosis is promoted by the TLR9 Ligand CpG and suppressed by potassium channel blockers. Hepatology 2007;45:314–322CrossRefPubMedGoogle Scholar
  99. 99.
    Kikuchi K, Lian ZX, Yang GX, et al. Bacterial CpG induces hyper-IgM production in CD27(+) memory B cells in primary biliary cirrhosis. Gastroenterology 2005;128:304–312CrossRefPubMedGoogle Scholar
  100. 100.
    Chuang YH, Lian ZX, Tsuneyama K, et al. Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 2006;26(4):232–240CrossRefPubMedGoogle Scholar
  101. 101.
    Shimoda S, Harada K, Niiro H, et al. Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology 2011;53(4):1270–1281CrossRefPubMedGoogle Scholar
  102. 102.
    Kimura Y, Leung PSC, Kenny TP, et al. Differential expression of intestinal trefoil factor in biliary epithelial cells of primary biliary cirrhosis. Hepatology 2002;36(5):1227–1235CrossRefPubMedGoogle Scholar
  103. 103.
    Isse K, Harada K, Sato Y, et al. Characterization of biliary intra-epithelial lymphocytes at different anatomical levels of intrahepatic bile ducts under normal and pathological conditions: numbers of CD4CD28- intra-epithelial lymphocytes are increased in primary biliary cirrhosis. Pathol Int 2006;56:17–24CrossRefPubMedGoogle Scholar
  104. 104.
    Kita H, Matsumura S, He X, et al. Quantitative and functional analysis of PDCE2- specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002;109:1231–1240PubMedGoogle Scholar
  105. 105.
    Martinez OM, Villanueva JC, Gershwin ME, et al. Cytokine patterns and cytotoxic mediators in primary biliary cirrhosis. Hepatology 1995;21(1):113–119PubMedGoogle Scholar
  106. 106.
    Nagano T, Yamamoto K, Matsumoto S, et al. Cytokine profile in the liver of primary biliary cirrhosis. J Clin Immunol 1999;19(6):422–427CrossRefPubMedGoogle Scholar
  107. 107.
    Rong G, Zhou Y, Xiong Y, et al. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol 2009;156:217–225CrossRefPubMedGoogle Scholar
  108. 108.
    Lan RY, Salunga TL, Tsuneyama K, et al. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 2009;32:43–51CrossRefPubMedGoogle Scholar
  109. 109.
    Kita H, Lian ZX, Van de Water J, et al. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002;195(1):113–123CrossRefPubMedGoogle Scholar
  110. 110.
    Muehlhoefer A, Saubermann LJ, Gu X, et al. Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J Immunol 2000;164:3368–3376PubMedGoogle Scholar
  111. 111.
    Yang GX, Lian ZX, Chuang YH, et al. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 2008;47:1974–1982CrossRefPubMedGoogle Scholar
  112. 112.
    Tsuda M, Ambrosini YM, Zhang W, et al. Fine phenotypic and functional characterization of effector CD8(+) T cells in patients with primary biliary cirrhosis. Hepatology 2011;54(4):1293–1302CrossRefPubMedGoogle Scholar
  113. 113.
    Trivedi PJ, Chapman RW. PSC, AIH and overlap syndrome in inflammatory bowel disease. Clin Res Hepatol Gastroenterol 2012. http://dx.doi.org/10.1016/j.clinre.2011.10.007
  114. 114.
    Arai O, Ikeda H, Mouri H, et al. Two cases of inflammatory bowel disease diagnosed in the course of primary biliary cirrhosis. Nihon Shokakibyo Gakkai Zasshi 2010;107(6):900–908PubMedGoogle Scholar
  115. 115.
    Aoki CA, Roifman CM, Lian ZX, et al. IL-2 receptor alpha deficiency and features of primary biliary cirrhosis. J Autoimmun 2006;27:50–53CrossRefPubMedGoogle Scholar
  116. 116.
    Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 2006;43:729–737CrossRefPubMedGoogle Scholar
  117. 117.
    Bernuzzi F, Fenoglio D, Battaglia F, et al. Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun 2010;35(3):176–180CrossRefPubMedGoogle Scholar
  118. 118.
    Afford SC, Randhawa S, Eliopoulos AG, et al. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection. J Exp Med 1999;189(2):441–446CrossRefPubMedGoogle Scholar
  119. 119.
    Afford SC, Ahmed-Choudhury J, Randhawa S, et al. CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signalling in human intrahepatic biliary epithelial cells. FASEB J 2001;15(13):2345–2354CrossRefPubMedGoogle Scholar
  120. 120.
    Alvaro D, Mancino MG. New insights on the molecular and cell biology of human cholangiopathies. Mol Aspects Med 2008;29(1–2):50–57CrossRefPubMedGoogle Scholar
  121. 121.
    Kinnman N, Hultcrantz R, Barbu V, et al. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury. Lab Invest 2000;80(5):697–707CrossRefPubMedGoogle Scholar
  122. 122.
    Kinnman N, Francoz C, Barbu V, et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab Invest 2003;83(2):163–173PubMedGoogle Scholar
  123. 123.
    Kruglov EA, Nathanson RA, Nguyen T, et al. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am J Physiol Gastrointest Liver Physiol 2006;290(4):G765–G771CrossRefPubMedGoogle Scholar
  124. 124.
    Jhandier MN, Kruglov EA, Lavoie EG, et al. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 2005;280(24):22986–22992CrossRefPubMedGoogle Scholar
  125. 125.
    Medina JF, Martínez-Ansó, Vazquez JJ, et al. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 1997;25(1):12–17CrossRefPubMedGoogle Scholar
  126. 126.
    Melero S, Spirlì C, Zsembery A, et al. Defective regulation of cholangiocyte Cl-/HCO3(-) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 2002;35(6):1513–1521CrossRefPubMedGoogle Scholar
  127. 127.
    Shibao K, Hirata K, Robert ME, et al. Loss of inositol 1,4,5-trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Gastroenterology 2003;125(4):1175–1187CrossRefPubMedGoogle Scholar
  128. 128.
    Prieto J, García N, Martí-Climent JM, et al. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 1999;117(1):167–172CrossRefPubMedGoogle Scholar
  129. 129.
    Poelstra K, Bakker WW, Klok PA, et al. A physiologic function for alkaline phosphatase: endotoxin detoxification. Lab Invest 1997;76:319–327PubMedGoogle Scholar
  130. 130.
    Poelstra K, Bakker WW, Klok PA, et al. Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am J Pathol 1997;151:1163–1169PubMedGoogle Scholar
  131. 131.
    Tuin A, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, et al. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J Physiol Gastrointest Liver Physiol 2006;290(2):G377–G385CrossRefPubMedGoogle Scholar
  132. 132.
    Wong JH, Xia L, Ng TB. A review of defensins of diverse origins. Curr Protein Pept Sci 2007;8(5):446–459CrossRefPubMedGoogle Scholar
  133. 133.
    Fickert P, Trauner M. When lightning strikes twice: the plot thickens for a dual role of the anion exchanger 2 (AE2/SLC4A2) in the pathogenesis and treatment of primary biliary cirrhosis. J Hepatol 2009;50(3):633–635CrossRefPubMedGoogle Scholar
  134. 134.
    Spirli C, Nathanson MH, Fiorotto R, et al. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 2001;121:156–169CrossRefPubMedGoogle Scholar
  135. 135.
    Zollner G, Wagner M, Fickert P, et al. Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver Int 2007;27(7):920–929CrossRefPubMedGoogle Scholar
  136. 136.
    Takeyama Y, Kanegae K, Inomata S, et al. Sustained upregulation of sodium taurocholate cotransporting polypeptide and bile salt export pump and downregulation of cholesterol 7α-hydroxylase in the liver of patients with end-stage primary biliary cirrhosis. Med Mol Morphol 2010;43(3):134–138CrossRefPubMedGoogle Scholar
  137. 137.
    Zollner G, Fickert P, Zenz R, et al. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 2001;33(3):633–646CrossRefPubMedGoogle Scholar
  138. 138.
    Krams SM, Surh CD, Coppel RL, et al. Immunization of experimental animals with dihydrolipoamide acetyltransferase, as a purified recombinant polypeptide, generates mitochondrial antibodies but not primary biliary cirrhosis. Hepatology 1989;9(3):411–416CrossRefPubMedGoogle Scholar
  139. 139.
    Masanaga T, Watanabe Y, Van de Water J, et al. Induction and persistence of immune-mediated cholangiohepatitis in neonatally thymectomized mice. Clin Immunol Immunopathol 1998;89(2):141–149CrossRefPubMedGoogle Scholar
  140. 140.
    Aisaka Y, Watanabe Y, Kamiyasu M, et al. Immune-mediated cholangiohepatitis in neonatally thymectomized mice: The role of T cells and analysis of T-cell receptor Vβ usage. J Autoimmun 2000;14(3):239–246CrossRefPubMedGoogle Scholar
  141. 141.
    Krams SM, Dorshkind K, Gershwin ME. Generation of biliary lesions after transfer of human lymphocytes into severe combined immunodeficient (SCID) mice. J Exp Med 1989;170(6):1919–1930CrossRefPubMedGoogle Scholar
  142. 142.
    Saitoh T, Fujiwara M, Nomoto M, et al. Hepatic lesions induced by graft-versus-host reaction across MHC class II antigens: an implication for animal model of primary biliary cirrhosis. Clin Immunol Immunopathol 1988;49(1):166–172CrossRefPubMedGoogle Scholar
  143. 143.
    Wake T, Takatsuka H, Seto Y, et al. Similarity between hepatic graft-versus-host disease and primary biliary cirrhosis. Hematology 2002;7(5):305–310CrossRefGoogle Scholar
  144. 144.
    Tsuneyama K, Nose M, Nisihara M, et al. Spontaneous occurrence of chronic non-suppurative destructive cholangitis and antimitochondrial autoantibodies in MRL/lpr mice: possible animal model for primary biliary cirrhosis. Pathol Int 2001;51(6):418–424CrossRefPubMedGoogle Scholar
  145. 145.
    Ohba K, Omagari K, Murase K, et al. A possible mouse model for spontaneous cholangitis: serological and histological characteristics of MRL/lpr mice. Pathology 2002;34(3):250–256CrossRefPubMedGoogle Scholar
  146. 146.
    Wakabayashi K, Lian ZX, Moritoki Y, et al. IL-2 receptor alpha(−/−) mice and the development of primary biliary cirrhosis. Hepatology 2006;44:1240–1249CrossRefPubMedGoogle Scholar
  147. 147.
    Salas JT, Banales JM, Sarvide S, et al. Ae2a, B-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 2008;134:1482–1493CrossRefPubMedGoogle Scholar
  148. 148.
    Oertelt S, Lian ZX, Cheng CM, et al. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 2006;177(3):1655–1660PubMedGoogle Scholar
  149. 149.
    Marie JC, Letterio JJ, Gavin M, et al. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005;201:1061–1067CrossRefPubMedGoogle Scholar
  150. 150.
    Yoshida K, Yang GX, Zhang W, et al. Deletion of interleukin-12p40 suppresses autoimmune cholangitis in dominant negative transforming growth factor beta receptor type II mice. Hepatology 2009;50(5):1494–1500CrossRefPubMedGoogle Scholar
  151. 151.
    Moritoki Y, Zhang W, Tsuneyama K, et al. B cells suppress the inflammatory response in a mouse model of primary biliary cirrhosis. Gastroenterology 2009;136(3):1037–1047CrossRefPubMedGoogle Scholar
  152. 152.
    Dhirapong A, Lleo A, Yang GX, et al. B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 2011;53(2):527–535CrossRefPubMedGoogle Scholar
  153. 153.
    Tsuda M, Moritoki Y, Lian ZX, et al. Biochemical and immunologic effects of rituximab in primary biliary cirrhosis patients with an incomplete response to ursodeoxycholic acid. Hepatology 2011 [Epub ahead of print]. doi:10.1002/hep.24748
  154. 154.
    Harris DP, Goodrich S, Mohrs K, et al. Cutting edge: The development of IL-4-producing B cells (B effector 2cells) is controlled by IL-4, IL-4 receptor alpha, and Th2 cells. J Immunol 2005;175:7103–7107PubMedGoogle Scholar
  155. 155.
    Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol 2006;176:705–710PubMedGoogle Scholar
  156. 156.
    Harris DP, Goodrich S, Gerth AJ, et al. Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 2005;174:6781–6790PubMedGoogle Scholar
  157. 157.
    Wakabayashi K, Yoshida K, Leung PS, et al. Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 2009;155(3):577–586CrossRefPubMedGoogle Scholar
  158. 158.
    Wu SJ, Yang YH, Tsuneyama K, et al. Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 2011;53(3):915–925CrossRefPubMedGoogle Scholar
  159. 159.
    Ambrosini YM, Yang GX, Zhang W, et al. The multi-hit hypothesis of primary biliary cirrhosis: polyinosinic-polycytidylic acid (poly I:C) and murine autoimmune cholangitis. Clin Exp Immunol 2011;166(1):110–120CrossRefPubMedGoogle Scholar
  160. 160.
    Zhong H, Yang X, Kaplan LM, et al. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am J Hum Genet 2010;86(4):581–591CrossRefPubMedGoogle Scholar
  161. 161.
    NovImmune SA. Primary biliary cirrhosis: investigating a new treatment option using NI-0801, a fully human anti-CXCL10 monoclonal antibody (PIANO). In: Clinicaltrials.gov [Internet] Bethesda (MD): National Library of Medicine (US) (2011) [cited 2011 Sep 05]. Available from: http://clinicaltrials.gov/show/NCT01430429 NLM identifier: NCT01430429.
  162. 162.
    Centocor Research and Development, Inc. A study of efficacy and safety of Ustekinumab in patients with primary biliary cirrhosis (PBC) who had an inadequate response to ursodeoxycholic acid. In: Clinicaltrials.gov [Internet] Nethesda (MD): National Library of Medicine (US) (2011) [cited 2011 Sep 09]. Available from: http://clinicaltrials.gov/ct2/show/NCT01389973 NLM identified: NCT01389973.
  163. 163.
    Lipp M, Müller G. Shaping up adaptive immunity: the impact of CCR7 and CXCR5 on lymphocyte trafficking. Verh Dtsch Ges Pathol 2003;87:90–101PubMedGoogle Scholar
  164. 164.
    Berg CP, Stein GM, Klein R, et al. Demonstration of PDC-E1 subunits as major antigens in the complement-fixing fraction M4 and re-evaluation of PDC-E1-specific antibodies in PBC patients. Liver Int 2006;26(7):846–855CrossRefPubMedGoogle Scholar
  165. 165.
    Preuss B, Berg C, Altenberend F, et al. Demonstration of autoantibodies to recombinant human sulphite oxidase in patients with chronic liver disorders and analysis of their clinical relevance. Clin Exp Immunol 2007;150(2):312–321CrossRefPubMedGoogle Scholar
  166. 166.
    Berg PA, Klein R. Mitochondrial antigen/antibody systems in primary biliary cirrhosis: revisited. Liver 1995;15(6):281–292PubMedGoogle Scholar
  167. 167.
    Klein R, Klöppel G, Garbe W, et al. Antimitochondrial antibody profiles determined at early stages of primary biliary cirrhosis differentiate between a benign and a progressive course of the disease. A retrospective analysis of 76 patients over 6–18 years. J Hepatol 1991;12(1):21–27CrossRefPubMedGoogle Scholar
  168. 168.
    Mackay IR, Whittingham S, Fida S, et al. The peculiar autoimmunity of primary biliary cirrhosis. Immunol Rev 2000;174:226–237CrossRefPubMedGoogle Scholar
  169. 169.
    Gao L, Tian X, Liu B, et al. The value of antinuclear antibodies in primary biliary cirrhosis. Clin Exp Med 2008;8(1):9–15CrossRefPubMedGoogle Scholar
  170. 170.
    Nakamura M, Kondo H, Mori T, et al. Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis. Hepatology 2007;45(1):118–127CrossRefPubMedGoogle Scholar
  171. 171.
    Invernizzi P, Podda M, Battezzati PM, et al. Autoantibodies against nuclear pore complexes are associated with more active and severe liver disease in primary biliary cirrhosis. J Hepatol 2001;34(3):366–372CrossRefPubMedGoogle Scholar
  172. 172.
    Worman HJ. Nuclear envelope protein autoantigens in primary biliary cirrhosis. Hepatol Res 2007;37(Suppl 3):S406–S411CrossRefPubMedGoogle Scholar
  173. 173.
    Muratori P, Muratori L, Ferrari R, et al. Characterization and clinical impact of antinuclear antibodies in primary biliary cirrhosis. Am J Gastroenterol 2003;98(2):431–437CrossRefPubMedGoogle Scholar
  174. 174.
    Ishibashi H, Komori A, Shimoda S, et al. Risk factors and prediction of long-term outcome in primary biliary cirrhosis. Int Med 2011;50(1):1–10CrossRefGoogle Scholar
  175. 175.
    Czaja AJ. Autoantibodies as prognostic markers in autoimmune liver disease. Dig Dis Sci 2010;55:2144–2161CrossRefPubMedGoogle Scholar
  176. 176.
    Miyachi K, Hankins RW, Matsushima H, et al. Profile and clinical significance of anti-nuclear envelope antibodies found in patients with primary biliary cirrhosis: a multicenter study. J Autoimmun 2003;20(3):247–254CrossRefPubMedGoogle Scholar
  177. 177.
    Züchner D, Sternsdorf T, Szostecki C, et al. Prevalence, kinetics, and therapeutic modulation of autoantibodies against Sp100 and promyelocytic leukemia protein in a large cohort of patients with primary biliary cirrhosis. Hepatology 1997;26(5):1123–1130PubMedGoogle Scholar
  178. 178.
    Milkiewicz P, Buwaneswaran H, Coltescu C, et al. Value of autoantibody analysis in the differential diagnosis of chronic cholestatic liver disease. Clin Gastroenterol Hepatol 2009;7(12):1355–1360CrossRefPubMedGoogle Scholar
  179. 179.
    Granito A, Yang WH, Muratori L, et al. PML nuclear body component Sp140 is a novel autoantigen in primary biliary cirrhosis. Am J Gastroenterol 2010;105(1):125–131CrossRefPubMedGoogle Scholar
  180. 180.
    Wichmann I, Montes-Cano MA, Respaldiza N, et al. Clinical significance of anti-multiple nuclear dots/Sp100 autoantibodies. Scand J Gastroenterol 2003;38(9):996–999CrossRefPubMedGoogle Scholar
  181. 181.
    Portmann B, Popper H, Neuberger J, et al. Sequential and diagnostic features in primary biliary cirrhosis based on serial histologic study in 209 patients. Gastroenterology 1985;88(6):1777–1790PubMedGoogle Scholar
  182. 182.
    Irie J, Wu Y, Wicker LS, et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006;203(5):1209–1219CrossRefPubMedGoogle Scholar
  183. 183.
    Nakagome Y, Ueno Y, Kogure T, et al. Autoimmune cholangitis in NOD.c3c4 mice is associated with cholangiocyte-specific Fas antigen deficiency. J Autoimmun 2007;29(1):20–29CrossRefPubMedGoogle Scholar
  184. 184.
    Zhang W, Sharma R, Ju ST, et al. Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology 2009;49(2):545–552CrossRefPubMedGoogle Scholar
  185. 185.
    Kita H, Naidenko OV, Kronenberg M, et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 2002;123(4):1031–1043CrossRefPubMedGoogle Scholar
  186. 186.
    Chuang YH, Lian ZX, Yang GX, et al. Natural killer T cells exacerbate liver injury in a transforming growth factor β receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 2008;47:571–580CrossRefPubMedGoogle Scholar
  187. 187.
    Leung PS, Park O, Tsuneyama K, et al. Induction of primary biliary cirrhosis in guinea pigs following chemical xenobiotic immunization. J Immunol 2007;179(4):2651–2657PubMedGoogle Scholar
  188. 188.
    Okada C, Akbar SM, Horiike N, et al. Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int 2005;25(3):595–603CrossRefPubMedGoogle Scholar
  189. 189.
    Zhang W, Fei Y, Gao J, et al. The role of CXCR3 in the induction of primary biliary cirrhosis. Clin Dev Immunol 2011;2011:564062 (Epub 2011 May 2)PubMedGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2012

Authors and Affiliations

  1. 1.Centre for Liver Research and NIHR Liver Biomedical Research UnitUniversity of BirminghamBirminghamUK
  2. 2.Department of GastroenterologyWycombe General HospitalHigh Wycombe, BuckinghamshireUK

Personalised recommendations