Hepatology International

, Volume 6, Issue 2, pp 475–481

Serum apolipoprotein C-III is independently associated with chronic hepatitis C infection and advanced fibrosis

  • J. Rowell
  • A. J. Thompson
  • J. R. Guyton
  • X. Q. Lao
  • J. G. McHutchison
  • J. J. McCarthy
  • K. Patel
Original Article



The hepatitis C virus (HCV) is known to disrupt lipid metabolism, making serum lipoprotein levels good candidates to explore as markers of HCV disease progression. Assessment of the major apolipoproteins (Apo) and their relationship to hepatic fibrosis remain largely unexplored.


We compared the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), and Apo A-I, -B, -C-III, and -E between patients with cleared versus active infection (n = 83), and between those chronically infected patients (n = 216) with advanced versus mild–moderate hepatic fibrosis (METAVIR stage F3–4 vs. F0–2) using multiple logistic regression.


Apo C-III levels were 25% higher in subjects with cleared infection versus those with active infection (p = 0.009). Low levels of Apo C-III (p = 1.3 × 10−5), Apo A-I (p = 2.9 × 10−5), total cholesterol (p = 5.0 × 10−4), LDL-C (p = 0.005), and HDL-C (p = 2.0 × 10−4) were associated with advanced fibrosis in univariate analyses. Multivariable analysis revealed Apo C-III as the most significant factor associated with advanced fibrosis (p = 0.0004), followed by age (p = 0.013) and Apo A-I (p = 0.022). Inclusion of both Apo C-III and Apo A-I in a model to predict advanced fibrosis improved the area under the receiver operator curve only modestly.


Relative to other lipoproteins, low serum Apo C-III levels are the most strongly associated with chronic versus cleared infection and decline with increasing severity of hepatic fibrosis. Apo C-III deserves further attention as a possible marker of HCV disease progression.


Apolipoprotein C-III Apolipoprotein AI Hepatitis C virus Fibrosis 

Supplementary material

12072_2011_9291_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)


  1. 1.
    Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 2005;5:558–567PubMedCrossRefGoogle Scholar
  2. 2.
    Alaei M, Negro F. Hepatitis C virus and glucose and lipid metabolism. Diabetes Metab 2008;34:692–700PubMedCrossRefGoogle Scholar
  3. 3.
    Perlemuter G, Sabile A, Letteron P, et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. Faseb J 2002;16:185–194PubMedCrossRefGoogle Scholar
  4. 4.
    Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab 2010;21:33–40PubMedCrossRefGoogle Scholar
  5. 5.
    Serfaty L, Andreani T, Giral P, Carbonell N, Chazouilleres O, Poupon R. Hepatitis C virus induced hypobetalipoproteinemia: a possible mechanism for steatosis in chronic hepatitis C. J Hepatol 2001;34:428–434PubMedCrossRefGoogle Scholar
  6. 6.
    Petit JM, Benichou M, Duvillard L, et al. Hepatitis C virus-associated hypobetalipoproteinemia is correlated with plasma viral load, steatosis, and liver fibrosis. Am J Gastroenterol 2003;98:1150–1154PubMedGoogle Scholar
  7. 7.
    Sud A, Hui JM, Farrell GC, et al. Improved prediction of fibrosis in chronic hepatitis C using measures of insulin resistance in a probability index. Hepatology 2004;39:1239–1247PubMedCrossRefGoogle Scholar
  8. 8.
    Forns X, Ampurdanes S, Llovet JM, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology 2002;36:986–992PubMedGoogle Scholar
  9. 9.
    Bochud PY, Cai T, Overbeck K. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. J Hepatol 2002;51:655–666CrossRefGoogle Scholar
  10. 10.
    Negro F, Clement S. Impact of obesity, steatosis and insulin resistance on progression and response to therapy of hepatitis C. J Viral Hepat 2009;16:681–688PubMedCrossRefGoogle Scholar
  11. 11.
    Jhaveri R, McHutchison J, Patel K, Qiang G, Diehl AM. Specific polymorphisms in hepatitis C virus genotype 3 core protein associated with intracellular lipid accumulation. J Infect Dis 2008;197:283–291PubMedCrossRefGoogle Scholar
  12. 12.
    Molina S, Misse D, Roche S, et al. Identification of apolipoprotein C-III as a potential plasmatic biomarker associated with the resolution of hepatitis C virus infection. Proteomics Clin Appl 2008;2:751–761PubMedCrossRefGoogle Scholar
  13. 13.
    The French METAVIR Cooperative Study Group. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 1994;20:15–20CrossRefGoogle Scholar
  14. 14.
    Zheng C, Khoo C, Ikewaki K, Sacks FM. Rapid turnover of apolipoprotein C-III-containing triglyceride-rich lipoproteins contributing to the formation of LDL subfractions. J Lipid Res 2007;48:1190–1203PubMedCrossRefGoogle Scholar
  15. 15.
    Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb 2009;16:6–11PubMedCrossRefGoogle Scholar
  16. 16.
    Huang H, Sun F, Owen DM, et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci USA 2007;104:5848–5853PubMedCrossRefGoogle Scholar
  17. 17.
    Olofsson SO, Boren J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 2005;258:395–410PubMedCrossRefGoogle Scholar
  18. 18.
    Fruchart JC. Peroxisome proliferator-activated receptor-alpha (PPARalpha): at the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis 2009;205:1–8PubMedCrossRefGoogle Scholar
  19. 19.
    Ooi EM, Barrett PH, Chan DC, Watts GF. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond) 2008;114:611–624CrossRefGoogle Scholar
  20. 20.
    Tanaka N, Moriya K, Kiyosawa K, Koike K, Aoyama T. Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor alpha in transgenic mice: implications for HCV-associated hepatocarcinogenesis. Int J Cancer 2008;122:124–131PubMedCrossRefGoogle Scholar
  21. 21.
    Nguyen H, Sankaran S, Dandekar S. Hepatitis C virus core protein induces expression of genes regulating immune evasion and anti-apoptosis in hepatocytes. Virology 2006;354:58–68PubMedCrossRefGoogle Scholar
  22. 22.
    Lacorte JM, Ktistaki E, Beigneux A, Zannis VI, Chambaz J, Talianidis I. Activation of CAAT enhancer-binding protein delta (C/EBPdelta) by interleukin-1 negatively influences apolipoprotein C-III expression. J Biol Chem 1997;272:23578–23584PubMedCrossRefGoogle Scholar
  23. 23.
    Lacorte JM, Beigneux A, Parant M, Chambaz J. Repression of apoC-III gene expression by TNFalpha involves C/EBPdelta/NF-IL6beta via an IL-1 independent pathway. FEBS Lett 1997;415:217–220PubMedCrossRefGoogle Scholar
  24. 24.
    Kardassis D, Pardali K, Zannis VI. SMAD proteins transactivate the human ApoCIII promoter by interacting physically and functionally with hepatocyte nuclear factor 4. J Biol Chem 2000;275:41405–41414PubMedCrossRefGoogle Scholar
  25. 25.
    Fernandez-Miranda C, Castellano G, Guijarro C, et al. Lipoprotein changes in patients with chronic hepatitis C treated with interferon-alpha. Am J Gastroenterol 1998;93:1901–1904PubMedGoogle Scholar
  26. 26.
    Naeem M, Bacon BR, Mistry B, Britton RS, Di Bisceglie AM. Changes in serum lipoprotein profile during interferon therapy in chronic hepatitis C. Am J Gastroenterol 2001;96:2468–2472PubMedCrossRefGoogle Scholar
  27. 27.
    Andrade RJ, Garcia-Escano MD, Valdivielso P, Alcantara R, Sanchez-Chaparro MA, Gonzalez-Santos P. Effects of interferon-beta on plasma lipid and lipoprotein composition and post-heparin lipase activities in patients with chronic hepatitis C. Aliment Pharmacol Ther 2000;14:929–935PubMedCrossRefGoogle Scholar
  28. 28.
    Andre P, Komurian-Pradel F, Deforges S, et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002;76:6919–6928PubMedCrossRefGoogle Scholar
  29. 29.
    Nitanai A, Katoh N, Oikawa S, et al. Decreases in serum apolipoprotein C-III concentration in cows with ethionine-induced fatty liver. J Vet Med Sci 2004;66:1113–1118PubMedCrossRefGoogle Scholar
  30. 30.
    Quarfordt SH, Shelburne FA, Meyers W, Jakoi L, Hanks J. Effect of apolipoproteins on the induction of hepatic steatosis in rats. Gastroenterology 1981;80:149–153PubMedGoogle Scholar
  31. 31.
    Imbert-Bismut F, Ratziu V, Pieroni L, Charlotte F, Benhamou Y, Poynard T. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study. Lancet 2001;357:1069–1075PubMedCrossRefGoogle Scholar
  32. 32.
    Rockey DC, Bissell DM. Noninvasive measures of liver fibrosis. Hepatology 2006;43:S113–S120PubMedCrossRefGoogle Scholar
  33. 33.
    Barr SI, Kottke BA, Mao SJ. Postprandial exchange of apolipoprotein C-III between plasma lipoproteins. Am J Clin Nutr 1981;34:191–198PubMedGoogle Scholar
  34. 34.
    Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation 2008;118:2047–2056PubMedCrossRefGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2011

Authors and Affiliations

  • J. Rowell
    • 1
  • A. J. Thompson
    • 2
  • J. R. Guyton
    • 1
  • X. Q. Lao
    • 3
  • J. G. McHutchison
    • 2
  • J. J. McCarthy
    • 3
  • K. Patel
    • 2
  1. 1.Division of Endocrinology, Department of Medicine, Metabolism and NutritionDuke UniversityDurhamUSA
  2. 2.Department of GI/Hepatology Research Program, Duke Clinical Research InstituteDuke UniversityDurhamUSA
  3. 3.Institute for Genome Sciences and PolicyDuke UniversityDurhamUSA

Personalised recommendations