Hepatology International

, Volume 3, Issue 3, pp 509–515 | Cite as

Diffuse intrahepatic recurrence after percutaneous radiofrequency ablation for solitary and small hepatocellular carcinoma

  • Yoshiyuki Mori
  • Hideyuki Tamai
  • Naoki Shingaki
  • Kosaku Moribata
  • Tatsuya Shiraki
  • Hisanobu Deguchi
  • Kazuki Ueda
  • Shotaro Enomoto
  • Hiroto Magari
  • Izumi Inoue
  • Takao Maekita
  • Mikitaka Iguchi
  • Kimihiko Yanaoka
  • Masashi Oka
  • Masao Ichinose
Case Report

Abstract

Two patients developed segmental, diffuse intrahepatic recurrence after percutaneous radiofrequency ablation (RFA) to treat a primary, solitary, and small (2.5 cm) hepatocellular carcinoma (HCC). Despite the size of the HCC, levels of the tumor markers (α-fetoprotein, α-fetoprotein-L3%, and des-γ-carboxyprothrombin) were all elevated before RFA, and tumors in both patients were contiguous with a major branch of the portal vein. Tumor biopsies of both patients revealed moderately differentiated HCC but diagnostic imaging showed an area of reduced tumor blood flow, suggesting a poorly differentiated component. Since early detection of post-RFA malignancies by standard ultrasonography and contrast-enhanced computed tomography was difficult, the most sensitive indicator of recurrence in these two patients was the elevated tumor markers. The diffuse intrahepatic recurrence was thought to be caused by increased intratumoral pressure during RFA, resulting in the dissemination of cancer cells through the contiguous portal vein. The clinical course of these tumors indicate that the choice of RFA should be carefully considered when treating specific subtype of HCC that is adjacent to main portal vein branch and involves a possible poorly differentiated component and that surgical resection or combinations of RFA with other treatment modalities such as transcatheter arterial chemoembolization should be considered as alternative treatment strategies.

Keywords

Hepatocellular carcinoma Radiofrequency ablation Dissemination Diffuse recurrence 

References

  1. 1.
    Rossi S, Di Stasi M, Buscarini E, Quaretti P, Garbagnati F, Squassante L, et al. Percutaneous RF interstitial ablation in the treatment of hepatic cancer. AJR Am J Roentgenol 1996;167:759–768PubMedGoogle Scholar
  2. 2.
    Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic–pathologic correlation. Cancer 2000;88:2452–2463. doi:10.1002/1097-0142(20000601)88:11<2452::AID-CNCR5>3.0.CO;2-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Tateishi R, Shiina S, Teratani T, Obi S, Sato S, Koike Y, et al. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. Cancer 2005;103:1201–1209. doi:10.1002/cncr.20892 PubMedCrossRefGoogle Scholar
  4. 4.
    Arii S, Yamaoka Y, Futagawa S, Inoue K, Kobayashi K, Kojiro M, et al. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nation-wide survey in Japan. The Liver Cancer Study Group of Japan. Hepatology 2000;32:1224–1229. doi:10.1053/jhep.2000.20456 PubMedCrossRefGoogle Scholar
  5. 5.
    Llovet JM, Vilana R, Brú C, Bianchi L, Salmeron JM, Boix L, et al. Increased risk of tumor seeding after percutaneous radiofrequency ablation for single hepatocellular carcinoma. Hepatology 2001;33:1124–1129. doi:10.1053/jhep.2001.24233 PubMedCrossRefGoogle Scholar
  6. 6.
    Takada Y, Kurata M, Ohkohchi N. Rapid and aggressive recurrence accompanied by portal tumor thrombus after radiofrequency ablation for hepatocellular carcinoma. Int J Clin Oncol 2003;8:332–335. doi:10.1007/s10147-003-0328-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Seki T, Tamai T, Ikeda K, Imamura M, Nishimura A, Yamashiki N, et al. Rapid progression of hepatocellular carcinoma after transcatheter arterial chemoembolization and percutaneous radiofrequency ablation in the primary tumour region. Eur J Gastroenterol Hepatol 2001;13:291–294. doi:10.1097/00042737-200103000-00014 PubMedCrossRefGoogle Scholar
  8. 8.
    Portolani N, Tiberio GA, Ronconi M, Coniglio A, Ghidoni S, Gaverini G, et al. Aggressive recurrence after radiofrequency ablation of liver neoplasms. Hepatogastroenterology 2003;50:2179–2184PubMedGoogle Scholar
  9. 9.
    Nicoli N, Casaril A, Hilal MA, Coniglio A, Ghidoni S, Gaverini G, et al. A case of rapid intrahepatic dissemination of hepatocellular carcinoma after radiofrequency thermal ablation. Am J Surg 2004;188:165–167. doi:10.1016/j.amjsurg.2003.12.061 PubMedCrossRefGoogle Scholar
  10. 10.
    Ruzzenente A, Manzoni GD, Molfetta M, Pachera S, Genco B, Donataccio M, et al. Rapid progression of hepatocellular carcinoma after radiofrequency ablation. World J Gastroenterol 2004;10:1137–1140PubMedGoogle Scholar
  11. 11.
    Tamaki K, Shimizu I, Oshio A, Fukuno H, Inoue H, Tsutsui A, et al. Influence of large intrahepatic blood vessels on the gross and histological characteristics of lesions produced by radiofrequency ablation in a pig liver model. Liver Int 2004;24:696–701. doi:10.1111/j.1478-3231.2004.0952.x PubMedCrossRefGoogle Scholar
  12. 12.
    Honda H, Tajima T, Kajiyama K, Kuroiwa T, Yoshimitsu K, Irie H, et al. Vascular changes in hepatocellular carcinoma: correlation of radiologic and pathologic findings. AJR Am J Roentgenol 1999;173:1213–1217PubMedGoogle Scholar
  13. 13.
    Asayama Y, Yoshimitsu K, Irie H, Nishihara Y, Aishima S, Tajima T, et al. Poorly versus moderately differentiated hepatocellular carcinoma: vascularity assessment by computed tomographic hepatic angiography in correlation with histologically counted number of unpaired arteries. J Comput Assist Tomogr 2007;31:188–192. doi:10.1097/01.rct.0000236417.82395.57 PubMedCrossRefGoogle Scholar
  14. 14.
    Hagiwara S, Kudo M, Kawasaki T, Nagashima M, Minami Y, Chung H, et al. Prognostic factors for portal venous invasion in patients with hepatocellular carcinoma. J Gastroenterol 2006;41:1214–1219. doi:10.1007/s00535-006-1950-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Carr BI, Kanke F, Wise M, Satomura S. Clinical evaluation of lens culinaris agglutinin-reactive alphafetoprotein and des-gamma-carboxyprothrombin in histologically proven hepatocellular carcinoma in United States. Dig Dis Sci 2007;52:776–782. doi:10.1007/s10620-006-9541-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshida S, Kurokohchi K, Arima K, Masaki T, Hosomi N, Funaki T, et al. Clinical significance of lens culinaris agglutinin-reactive fraction of serum alpha-fetoprotein in patients with hepatocellular carcinoma. Int J Oncol 2002;20:305–309PubMedGoogle Scholar
  17. 17.
    Okuda H, Nakanishi T, Takatsu K, Saito A, Hayashi N, Yamamoto M, et al. Clinicopathologic features of patients with hepatocellular carcinoma seropositive for alpha-fetoprotein-L3 and seronegative for des-gamma-carboxy prothrombin in comparison with those seropositive for des-gamma-carboxy prothrombin alone. J Gastroenterol Hepatol 2002;17:772–778. doi:10.1046/j.1440-1746.2002.02806.x PubMedCrossRefGoogle Scholar
  18. 18.
    Kotoh K, Morizono S, Kohjima M, Enjoji M, Sakai H, Nakamuta M. Evaluation of liver parenchymal pressure and portal endothelium damage during radio frequency ablation in an in vivo porcine model. Liver Int 2005;25:1217–1223. doi:10.1111/j.1478-3231.2005.01167.x PubMedCrossRefGoogle Scholar
  19. 19.
    Kashiwagi K, Furusyo N, Kubo N, Nakashima H, Nomura H, Kashiwagi S, et al. A prospective comparison of the effect of interferon-alpha and interferon-beta treatment in patients with chronic hepatitis C on the incidence of hepatocellular carcinoma development. J Infect Chemother 2003;9:333–340. doi:10.1007/s10156-003-0271-5 PubMedCrossRefGoogle Scholar
  20. 20.
    Mazzella G, Accogli E, Scottili S, Festi D, Orsini M, Salzetta A, et al. Alpha interferon treatment may prevent hepatocellular carcinoma in HCV-related liver cirrhosis. J Hepatol 1996;24:141–147. doi:10.1016/S0168-8278(96)80022-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Nishiguchi S, Kuroki T, Nakatani S, Morimoto H, Takeda T, Nakajima S, et al. Randomised trial of effects of interferon-a on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. Lancet 1995;346:1051–1055. doi:10.1016/S0140-6736(95)91739-X PubMedCrossRefGoogle Scholar
  22. 22.
    Kubo S, Nishiguchi S, Hirohashi K, Tanaka H, Shuto T, Yamazaki O, et al. Effects of long-term postoperative interferon-alpha therapy on intrahepatic recurrence after resection of hepatitis C virus-related hepatocellular carcinoma. A randomized, controlled trial. Ann Intern Med 2001;134:963–967PubMedGoogle Scholar
  23. 23.
    Ikeda K, Arase Y, Saitoh S, Kobayashi M, Suzuki Y, Suzuki F, et al. Interferon beta prevents recurrence of hepatocellular carcinoma after complete resection or ablation of the primary tumor—a prospective randomized study of hepatitis C virus-related liver cancer. Hepatology 2000;32:228–232PubMedCrossRefGoogle Scholar
  24. 24.
    Saborido BP, Díaz JC, de Los Galanes SJ, Segurola CL, de Usera MA, Garrido MD, et al. Does preoperative fine needle aspiration-biopsy produce tumor recurrence in patients following liver transplantation for hepatocellular carcinoma? Transplant Proc 2005;37:3874–3877. doi:10.1016/j.transproceed.2005.09.169 PubMedCrossRefGoogle Scholar
  25. 25.
    Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs AK. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev 2007;33:437–447. doi:10.1016/j.ctrv.2007.04.001 PubMedCrossRefGoogle Scholar
  26. 26.
    Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res 2007;13:423–433. doi:10.1158/1078-0432.CCR-06-1357 CrossRefGoogle Scholar
  27. 27.
    Imai Y, Murakami T, Yoshida S, Nishikawa M, Ohsawa M, Tokunaga K, et al. Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology 2000;32:205–212. doi:10.1053/jhep.2000.9113 PubMedCrossRefGoogle Scholar
  28. 28.
    Asahina Y, Izumi N, Uchihara M, Noguchi O, Ueda K, Inoue K, et al. Assessment of Kupffer cells by ferumoxides-enhanced MR imaging is beneficial for diagnosis of hepatocellular carcinoma: comparison of pathological diagnosis and perfusion patterns assessed by CT hepatic arteriography and CT arterioportography. Hepatol Res 2003;27:196–204. doi:10.1016/S1386-6346(03)00261-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Huppertz A, Haraida S, Kraus A, Zech CJ, Scheidler J, Breuer J, et al. Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT—initial observations. Radiology 2005;234:468–478. doi:10.1148/radiol.2342040278 PubMedCrossRefGoogle Scholar
  30. 30.
    Halavaara J, Breuer J, Ayuso C, Balzer T, Bellin MF, Blomqvist L, et al. Liver tumor characterization: comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT—a multicenter trial. J Comput Assist Tomogr 2006;30:345–354. doi:10.1097/00004728-200605000-00001 PubMedCrossRefGoogle Scholar
  31. 31.
    Sheen IS, Jeng KS, Shih SC, Wang PC, Chang WH, Wang HY, et al. Does surgical resection of hepatocellular carcinoma accelerate cancer dissemination? World J Gastroenterol 2004;10:31–36PubMedGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2009

Authors and Affiliations

  • Yoshiyuki Mori
    • 1
  • Hideyuki Tamai
    • 1
  • Naoki Shingaki
    • 1
  • Kosaku Moribata
    • 1
  • Tatsuya Shiraki
    • 1
  • Hisanobu Deguchi
    • 1
  • Kazuki Ueda
    • 1
  • Shotaro Enomoto
    • 1
  • Hiroto Magari
    • 1
  • Izumi Inoue
    • 1
  • Takao Maekita
    • 1
  • Mikitaka Iguchi
    • 1
  • Kimihiko Yanaoka
    • 1
  • Masashi Oka
    • 1
  • Masao Ichinose
    • 1
  1. 1.Second Department of Internal MedicineWakayama Medical UniversityWakayamaJapan

Personalised recommendations