Advertisement

Voltage stability constrained transmission network expansion planning using fast convergent grey wolf optimization algorithm

  • Ashish KhandelwalEmail author
  • Annapurna Bhargava
  • Ajay Sharma
Special Issue
  • 23 Downloads

Abstract

Transmission network expansion planning problem (TNEP) is of utmost importance in power system now a days. In this paper, a voltage stability indicator (L-index) is applied to limit the voltage of buses. Hence TNEP is formulated incorporating this voltage stability feature. Thus formulated TNEP is termed as voltage stability constrained TNEP (VSC-TNEP). TNEP has been solved using various conventional and non-conventional strategies by various researchers in these days. Here, TNEP and VSC-TNEP for IEEE-24 bus test system is solved using grey wolf optimization technique (GWO) and modified GWO. The modified GWO algorithm namely, fast convergent GWO (FCGWO) is validated over 25 standard benchmark test functions and compared with other techniques.

Keywords

Swarm intelligence Grey wolf optimization Voltage stability indicator IEEE 24 bus test system 

Notes

References

  1. 1.
    Kessel P, Glavitsch H (1986) Estimating the voltage stability of a power system. IEEE Trans Power Deliv 1(3):346–354CrossRefGoogle Scholar
  2. 2.
    Zhang Wen, Liu Yutian (2008) Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. Int J Electr Power Energy Syst 30(9):525–532CrossRefGoogle Scholar
  3. 3.
    Devaraj D, Roselyn J Preetha (2010) Genetic algorithm based reactive power dispatch for voltage stability improvement. Int J Electr Power Energy Syst 32(10):1151–1156CrossRefGoogle Scholar
  4. 4.
    Huang GM, Nair N-KC (2002) Voltage stability constrained load curtailment procedure to evaluate power system reliability measures. In: Power engineering society winter meeting, 2002. IEEE, vol. 2, pp 761–765Google Scholar
  5. 5.
    Lee CW, Ng Simon KK, Zhong J, Wu Felix F (2006) Transmission expansion planning from past to future. In: Power systems conference and exposition, 2006. PSCE’06. 2006 IEEE PES, pp 257–265Google Scholar
  6. 6.
    Seyedali M, Mirjalili SM, Andrew L (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  7. 7.
    Sharma A, Sharma H, Bhargava A, Sharma N, Bansal JC (2016) Optimal placement and sizing of capacitor using limaçon inspired spider monkey optimization algorithm. Memet Comput 9:1–21Google Scholar
  8. 8.
    Sharma A, Sharma H, Bhargava A, Sharma N (2017) Power law-based local search in spider monkey optimisation for lower order system modelling. Int J Syst Sci 48(1):150–160CrossRefzbMATHGoogle Scholar
  9. 9.
    El-Gaafary AAM, Mohamed YS, Hemeida AM, Mohamed AAA (2015) Grey wolf optimization for multi input multi output system. Univ J Commun Netw 3(1):1–6CrossRefGoogle Scholar
  10. 10.
    Guha D, Roy PK, Banerjee S (2016) Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol Comput 27:97–115CrossRefGoogle Scholar
  11. 11.
    Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381CrossRefGoogle Scholar
  12. 12.
    Romero R, Mantovani JRS, Rider MJ, et al (2005) Transmission-expansion planning using the dc model and nonlinear-programming technique. In: Generation, transmission and distribution, IEE Proceedings, IET, vol. 152, pp 763–769Google Scholar
  13. 13.
    Romero R, Gallego RA, Monticelli A (1996) Transmission system expansion planning by simulated annealing. IEEE Trans Power Syst 11(1):364–369CrossRefGoogle Scholar
  14. 14.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06. Erciyes Univ. Press, ErciyesGoogle Scholar
  15. 15.
    Storn R, Price K (1995) Differential evolution–a simple and efficient adaptive scheme for global optimization over continuous spaces. International computer science institute Publications, BerkeleyzbMATHGoogle Scholar
  16. 16.
    Clerc M, Kennedy J (2011) Standard pso 2011. Particle Swarm Central Site [online]. http://www.particleswarm.info
  17. 17.
    Romero R, Rocha C, Mantovani JRS, Sanchez IG (2005) Constructive heuristic algorithm for the dc model in network transmission expansion planning. IEE Proc-Gener, Transm Distrib 152(2):277–282CrossRefGoogle Scholar
  18. 18.
    Fang R, Hill DJ (2003) A new strategy for transmission expansion in competitive electricity markets. IEEE Trans Power Syst 18(1):374–380CrossRefGoogle Scholar
  19. 19.
    Rathore C, Roy R, Sharma U, Patel J (2013) Artificial bee colony algorithm based static transmission expansion planning. In: International conference on energy efficient technologies for sustainability (ICEETS), 2013, IEEE, pp 1126–1131Google Scholar
  20. 20.
    Rider MJ, Garcia AV, Romero R (2008) Transmission system expansion planning by a branch-and-bound algorithm. IET Gener Transm Distrib 2(1):90–99CrossRefGoogle Scholar
  21. 21.
    Silva IJ, Rider MJ, Romero R, Garcia AV, Muraric CA (2005) Transmission network expansion planning with security constraints. IEE Proc Gener Trans Distrib 152(6):828–836CrossRefGoogle Scholar
  22. 22.
    Romero Rubén, Rider Marcos J, Silva Irênio de J (2007) A metaheuristic to solve the transmission expansion planning. IEEE Trans Power Syst 22(4):2289–2291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Rajasthan Technical UniversityKotaIndia
  2. 2.Government Engineering CollegeJhalawarIndia

Personalised recommendations