Advertisement

Evolutionary Intelligence

, Volume 7, Issue 2, pp 107–118 | Cite as

An evolutionary robotics approach for the distributed control of satellite formations

  • Dario Izzo
  • Luís F. Simões
  • Guido C. H. E. de Croon
Special Issue

Abstract

We propose and study a decentralized formation flying control architecture based on the evolutionary robotic technique. We develop our control architecture for the MIT SPHERES robotic platform on board the International Space Station and we show how it is able to achieve micrometre and microradians precision at the path planning level. Our controllers are homogeneous across satellites and do not make use of labels (i.e. all satellites can be exchanged at any time). The evolutionary process is able to produce homogeneous controllers able to plan, with high precision, for the acquisition and maintenance of any triangular formation.

Keywords

Satellite swarm control Evolutionary robotics Neural networks Particle swarm optimization 

References

  1. 1.
    Ampatzis C, Tuci E, Trianni V, Trianni V, Christensen AL, Dorigo M (2009) Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Artif Life 15(4):465–484. doi: 10.1162/artl.2009.Ampatzis.013 CrossRefGoogle Scholar
  2. 2.
    Arkin RC (1998) Behavior-based robotics intelligent robotics and autonomous agents series. MIT Press, CambridgeGoogle Scholar
  3. 3.
    Ayre M, Pettazzi L, Izzo D (2005) Self-assembly in space using behaviour-based intelligent components. Tech. Rep. SASUBBIC05. European Space Agency, Advanced Concepts Team, NoordwijkGoogle Scholar
  4. 4.
    Badawy A, McInnes CR (2008) On-orbit assembly using superquadric potential fields. J Guid Control Dyn 31(1):30–43. doi: 10.2514/1.28865 CrossRefGoogle Scholar
  5. 5.
    Balch T, Arkin RC (1998) Behavior-based formation control for multirobot teams. IEEE Trans Robot Autom 14(6):926–939. doi: 10.1109/70.736776 CrossRefGoogle Scholar
  6. 6.
    Baldassarre G, Nolfi S, Parisi D (2003) Evolving mobile robots able to display collective behaviors. Artif Life 9(3):255–267. doi: 10.1162/106454603322392460 CrossRefGoogle Scholar
  7. 7.
    Beichman CA, Woolf NJ, Lindensmith CA (eds) (1999) The Terrestrial Planet Finder (TPF): a NASA origins program to search for habitable planets. JPL Publication 99–003, National Aeronautics and Space Administration, Washington, D.C., URLhttp://exep.jpl.nasa.gov/TPF/tpf_book
  8. 8.
    Biscani F, Izzo D, Yam CH (2010) A global optimisation toolbox for massively parallel engineering optimisation. In: 4th international conference on astrodynamics tools and techniques (ICATT 2010), URLhttp://arxiv.org/abs/1004.3824
  9. 9.
    Blynel J, Floreano D (2003) Exploring the T-Maze: evolving learning-like robot behaviors using CTRNNs. In: applications of evolutionary computing, lecture notes in computer science, vol 2611. Springer, Berlin. doi: 10.1007/3-540-36605-9_54 Google Scholar
  10. 10.
    Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from Natural to Artificial Systems Santa Fe Institute Studies in the Sciences of Complexity series. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Cangelosi A, Marocco D, Peniak M, Bentley B, Ampatzis C, Izzo D (2010) Evolution in Robotic Islands. Ariadna Final Report (09/8301), European Space Agency, Advanced Concepts Team. www.esa.int/act.Google Scholar
  12. 12.
    Christensen AL, Dorigo M (2006) Evolving an integrated phototaxis and hole-avoidance behavior for a swarm-bot. In: Rocha LM, Yaeger LS, Bedau MA, Floreano D, Goldstone RL, Vespignani A (eds) Artificial Life X: proceedings of the tenth international conference on the simulation and synthesis of living systems. MIT Press, CambridgeGoogle Scholar
  13. 13.
    Clerc M (2006) Particle swarm optimization. ISTE, London. doi: 10.1002/9780470612163 CrossRefzbMATHGoogle Scholar
  14. 14.
    Dachwald B (2005) Optimal solar-sail trajectories for missions to the outer solar system. J Guid Control Dyn 28(6):1187–1193. doi: 10.2514/1.13301 CrossRefGoogle Scholar
  15. 15.
    Dachwald B (2005) Optimization of very-low-thrust trajectories using evolutionary neurocontrol. Acta Astronaut 57(2–8):175–185. doi: 10.1016/j.actaastro.2005.03.004 CrossRefGoogle Scholar
  16. 16.
    Dachwald B, Seboldt W (2002) Optimization of interplanetary rendezvous trajectories for solar sailcraft using a neurocontroller. In: AIAA/AAS astrodynamics specialist conference and exhibit, Monterey, CA, USA, AIAA-2002-4989Google Scholar
  17. 17.
    Ellery A, Scott GP, Husbands P, Gao Y, Vaughan ED, Eckersley S (2005) Bionics & Space Systems Design Case Study 1 - Mars Walker. Tech. Rep. Contract AO/1-4469/03/NL/SFe, European Space Agency, Advanced Concepts Team, Noordwijk, The NetherlandsGoogle Scholar
  18. 18.
    Fridlund CVM (2000) Darwin—the infrared space interferometry mission. ESA Bullet 103:20–25Google Scholar
  19. 19.
    Gazi V (2005) Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans Robot 21(6):1208–1214. doi: 10.1109/TRO.2005.853487 CrossRefGoogle Scholar
  20. 20.
    Hughes PC (2004) Spacecraft attitude dynamics dover books on aeronautical engineering series. Dover Publications, MineolaGoogle Scholar
  21. 21.
    Izzo D, Pettazzi L (2007) Autonomous and distributed motion planning for satellite swarm. J Guid Control Dyn 30(2):449–459. doi: 10.2514/1.22736 CrossRefGoogle Scholar
  22. 22.
    Izzo D, Pettazzi L, Ayre M (2005) Mission concept for autonomous on orbit assembly of a large reflector in space. In: 56th international astronautical congress, Fukuoka, Japan, Paper IAC-05-D1.4.03Google Scholar
  23. 23.
    Izzo D, Simões LF, Märtens M, de Croon GCHE, Heritier A, Yam CH (2013) Search for a grand tour of the jupiter galilean moons. In: Blum C (ed) Genetic and evolutionary computation conference (GECCO 2013). ACM Press, New York, pp 1301–1308. doi: 10.1145/2463372.2463524 Google Scholar
  24. 24.
    Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Series in Evolutionary Computation, Morgan KaufmannGoogle Scholar
  25. 25.
    Kernbach S (ed) (2013) Handbook of collective robotics: fundamentals and challenges. Pan Stanford Publishing, SingaporeGoogle Scholar
  26. 26.
    Lipson H (2001) Book review: evolutionary robotics: the biology, intelligence and technology of self-organizing machines by Stefano Nolfi and Dario Floreano. Artif Life 7(4):419–424. doi: 10.1162/106454601317297031 CrossRefGoogle Scholar
  27. 27.
    Miller D, Saenz-Otero A, Wertz J, Chen A, Berkowski G, Brodel C, Carlson S, Carpenter D, Chen S, Cheng S, Feller D, Jackson S, Pitts B, Perez F, Szuminski J, Sell S (2000) SPHERES: A testbed for long duration satellite formation flying in micro-gravity conditions. In: AAS/AIAA Spaceflight Mechanics Meeting, Clearwater, FL, USA, Jan. 23–26, 2000, Advances in the Astronautical Sciences Series, vol 105, American Astronautical Society, pp 167–179, AAS 00–110Google Scholar
  28. 28.
    Nolfi S, Floreano D (2000) Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines intelligent robotics and autonomous agents series. MIT Press, Cambridge, MA, USAGoogle Scholar
  29. 29.
    Pinciroli C, Birattari M, Tuci E, Dorigo M, del Rey Zapatero M, Vinko T, Izzo D (2008) Self-organizing and scalable shape formation for a swarm of pico satellites. In: NASA/ESA conference on adaptive hardware and systems, AHS’08, IEEE, pp 57–61, doi: 10.1109/AHS.2008.41
  30. 30.
    Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization—an overview. Swarm Intell 1(1):33–57. doi: 10.1007/s11721-007-0002-0 CrossRefGoogle Scholar
  31. 31.
    Ren W, Beard RW (2004) Decentralized scheme for spacecraft formation flying via the virtual structure approach. J Guid Control Dyn 27(1):73–82. doi: 10.2514/1.9287 CrossRefGoogle Scholar
  32. 32.
    Shoemake K (1992) Uniform random rotations. In: Kirk D (ed) Graphics gems III, the graphics gems series, vol 3. Academic Press, Newyork, pp 124–132CrossRefGoogle Scholar
  33. 33.
    Simões LF, Cruz C, Ribeiro RA, Correia L, Seidl T, Ampatzis C, Izzo D (2011) Path planning strategies inspired by swarm behaviour of plant root apexes. Ariadna final report (09/6401), European Space Agency, Advanced Concepts Team. www.esa.int/actGoogle Scholar
  34. 34.
    Smith BGR, Saaj CM, Allouis E (2010) Evolving legged robots using biologically inspired optimization strategies. In: IEEE international conference on robotics and biomimetics (ROBIO 2010), IEEE, pp 1335–1340, doi: 10.1109/ROBIO.2010.5723523
  35. 35.
    Yam CH, Di Lorenzo D, Izzo D (2011) Low-thrust trajectory design as a constrained global optimization problem. Proc Inst Mech Eng Part G J Aerosp Eng 225(11):1243–1251. doi: 10.1177/0954410011401686 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dario Izzo
    • 1
  • Luís F. Simões
    • 2
  • Guido C. H. E. de Croon
    • 3
  1. 1.Advanced Concepts TeamEuropean Space AgencyNoordwijkThe Netherlands
  2. 2.Computational Intelligence GroupVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Micro Air Vehicle LaboratoryTU DelftDelftThe Netherlands

Personalised recommendations