Advertisement

Evolutionary Intelligence

, Volume 3, Issue 2, pp 51–65 | Cite as

Evolutionary self-adaptation: a survey of operators and strategy parameters

  • Oliver KramerEmail author
Review Article

Abstract

The success of evolutionary search depends on adequate parameter settings. Ill conditioned strategy parameters decrease the success probabilities of genetic operators. Proper settings may change during the optimization process. The question arises if adequate settings can be found automatically during the optimization process. Evolution strategies gave an answer to the online parameter control problem decades ago: self-adaptation. Self-adaptation is the implicit search in the space of strategy parameters. The self-adaptive control of mutation strengths in evolution strategies turned out to be exceptionally successful. Nevertheless, for years self-adaptation has not achieved the attention it deserves. This paper is a survey of self-adaptive parameter control in evolutionary computation. It classifies self-adaptation in the taxonomy of parameter setting techniques, gives an overview of automatic online-controllable evolutionary operators and provides a coherent view on search techniques in the space of strategy parameters. Beyer and Sendhoff’s covariance matrix self-adaptation evolution strategy is reviewed as a successful example for self-adaptation and exemplarily tested for various concepts that are discussed.

Keywords

Self-adaptation Parameter control Mutation Crossover Evolution strategies Covariance matrix self-adaptation 

Notes

Acknowledgments

The author thanks Günter Rudolph and the anonymous reviewers for their helpful comments to improve the manuscript.

References

  1. 1.
    Angeline PJ (1995) Adaptive and self-adaptive evolutionary computations. In: Palaniswami M, Attikiouzel Y (eds) Computational intelligence a dynamic systems perspective. IEEE Press, New York, pp 152–163Google Scholar
  2. 2.
    Arnold DV, Brauer D (2008) On the behaviour of the (1+1)-ES for a simple constrained problem. In: Proceedings of the 10th conference on parallel problem solving from nature—PPSN X, pp 1–10Google Scholar
  3. 3.
    Auger A (2003) Convergence results for (1, λ)-SA-ES using the theory of ϕ-irreducible markov chains. In: Proceedings of the evolutionary algorithms workshop of the 30th international colloquium on automata, languages and programmingGoogle Scholar
  4. 4.
    Bäck T (1998) An overview of parameter control methods by self-adaption in evolutionary algorithms. Fundam Inf 35(1–4):51–66zbMATHGoogle Scholar
  5. 5.
    Bartz-Beielstein T (2006) Experimental research in evolutionary computation: the new experimentalism. Natural computing series. Springer, AprilGoogle Scholar
  6. 6.
    Bartz-Beielstein T, Lasarczyk C, Preu M (2005) Sequential parameter optimization. In: McKay B, et al (eds) Proceedings of the IEEE congress on evolutionary computation—CEC, vol 1. IEEE Press, pp 773–780Google Scholar
  7. 7.
    Bartz-Beielstein T, Preuss M (2006) Considerations of budget allocation for sequential parameter optimization (SPO). In: Paquete L, et al. (eds) Workshop on empirical methods for the analysis of algorithms, proceedings, Reykjavik, Iceland, pp 35–40Google Scholar
  8. 8.
    Bäck T (1991) Self-adaptation in genetic algorithms. In: Proceedings of the 1st European conference on artificial life—ECAL, pp 263–271Google Scholar
  9. 9.
    Bäck T (1992) The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm. In: Proceedings of the 2nd conference on parallel problem solving from nature—PPSN II, pp 85–94Google Scholar
  10. 10.
    Bäck T, Schütz M (1996) Intelligent mutation rate control in canonical genetic algorithms. In: Foundation of intelligent systems, 9th international symposium, ISMIS ’96. Springer, pp 158–167Google Scholar
  11. 11.
    Berlik S (2004) A step size preserving directed mutation operator. In: Proceedings of the 6th conference on genetic and evolutionary computation—GECCO, pp 786–787Google Scholar
  12. 12.
    Beyer H-G (2001) The theory of evolution strategies. Springer, BerlinGoogle Scholar
  13. 13.
    Beyer H-G, Deb K (2001) On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans Evol Comput 5(3):250–270CrossRefGoogle Scholar
  14. 14.
    Beyer H-G, Meyer-Nieberg S (2006) Self-adaptation on the ridge function class: first results for the sharp ridge. In: Proceedings of the 9th conference on parallel problem solving from nature—PPSN IX, pp 72–81Google Scholar
  15. 15.
    Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1:3–52zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Beyer HG, Sendhoff B (2008) Covariance matrix adaptation revisited—the cmsa evolution strategy. In: Proceedings of the 10th conference on parallel problem solving from nature—PPSN X, pp 123–132Google Scholar
  17. 17.
    Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127CrossRefGoogle Scholar
  18. 18.
    Davis L (1989) Adapting operator probabilities in genetic algorithms. In: Proceedings of the 3rd international conference on genetic algorithms, San Francisco, Morgan Kaufmann Publishers Inc, pp 61–69Google Scholar
  19. 19.
    de Landgraaf W, Eiben A, Nannen V (2007) Parameter calibration using meta-algorithms. In: Proceedings of the IEEE congress on evolutionary computation—CEC, pp 71–78Google Scholar
  20. 20.
    DeJong K (2007) Parameter setting in EAs: a 30 year perspective. In: Parameter setting in evolutionary algorithms, studies in computational intelligence. Springer, pp 1–18Google Scholar
  21. 21.
    Eiben A, Schut MC, de Wilde A (2006) Is self-adaptation of selection pressure and population size possible? A case study. In: Proceedings of the 9th conference on parallel problem solving from nature—PPSN IX, pp 900–909Google Scholar
  22. 22.
    Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141CrossRefGoogle Scholar
  23. 23.
    Eiben AE, Michalewicz Z, Schoenauer M, Smith JE (2007) Parameter control in evolutionary algorithms. In: Parameter setting in evolutionary algorithms, studies in computational intelligence. Springer, pp 19–46Google Scholar
  24. 24.
    Fogarty TC (1989) Varying the probability of mutation in the genetic algorithm. In: Proceedings of the 3rd international conference on genetic algorithms, San Francisco, Morgan Kaufmann Publishers Inc, pp 104–109Google Scholar
  25. 25.
    Fogel DB, Fogel LJ, Atma JW (1991) Meta-evolutionary programming. In: Proceedings of 25th asilomar conference on signals, systems & computers, pp 540–545Google Scholar
  26. 26.
    georg Beyer H, Arnold DV (2003) Qualms regarding the optimality of cumulative path length control in csa/cma-evolution strategies. Evol Comput 11Google Scholar
  27. 27.
    Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, ReadingzbMATHGoogle Scholar
  28. 28.
    Grefenstette J (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst Man Cybern 16(1):122–128CrossRefGoogle Scholar
  29. 29.
    Hansen N (2006) An analysis of mutative sigma self-adaptation on linear fitness functions. Evol Comput 14(3):255–275CrossRefGoogle Scholar
  30. 30.
    Harik GR, Goldberg DE (1997) Learning linkage. In: Foundations of genetic algorithms 4. Morgan Kaufmann, pp 247–262Google Scholar
  31. 31.
    Harik GR, Lobo FG, Sastry K (2006) Linkage learning via probabilistic modeling in the extended compact genetic algorithm (ECGA). In: Scalable optimization via probabilistic modeling, studies in computational intelligence, Springer, pp 39–61Google Scholar
  32. 32.
    Herdy M (1992) Reproductive isolation as strategy parameter in hierarchically organized evolution strategies. In: Proceedings of the 10th conference on parallel problem solving from nature—PPSN II, pp 207–217Google Scholar
  33. 33.
    Hesser J, Männer R (1990) Towards an optimal mutation probability for genetic algorithms. In: Proceedings of the 10th conference on parallel problem solving from nature—PPSN I, London, UK, Springer-Verlag, pp 23–32Google Scholar
  34. 34.
    Hesser J, Männer R (1992) Investigation of the m-heuristic for optimal mutation probabilities. In PPSN, pp 115–124Google Scholar
  35. 35.
    Hildebrand L (2002) Asymmetrische evolutionsstrategien. PhD thesis, University of DortmundGoogle Scholar
  36. 36.
    Holland JH (1992) Adaptation in natural and artificial systems, 1st edn, MIT Press, CambridgeGoogle Scholar
  37. 37.
    Jägersknpper J (2005) Rigorous runtime analysis of the (1+1) es: 1/5-rule and ellipsoidal fitness landscapes. In: Proceedings of the workshop on foundation of genetic algorithms FOGA, pp 260–281Google Scholar
  38. 38.
    Jägersknpper J (2006) Probabilistic runtime analysis of (1 + λ)es using isotropic mutations. In: Proceedings of the 8th conference on genetic and evolutionary computation—GECCO, New York, ACM, pp 461–468Google Scholar
  39. 39.
    Joines J, Houck C (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Fogel DB (eds) Proceedings of the 1st IEEE conference on evolutionary computation, Orlando, Florida, IEEE Press, pp 579–584Google Scholar
  40. 40.
    Jong KAD (1975) An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of MichiganGoogle Scholar
  41. 41.
    Koumoutsakos P, Muller SD (2006) Flow optimization using stochastic algorithms. Lecture Notes Control Inf Sci 330:213–229CrossRefGoogle Scholar
  42. 42.
    Kramer O (2008) Premature convergence in constrained continuous search spaces. In: Proceedings of the 10th conference on parallel problem solving from nature—PPSN X, Berlin, Springer, to appearGoogle Scholar
  43. 43.
    Kramer O (2008) Self-adaptive inversion mutation for combinatorial representations. In: Proceedings of the 2008 international conference on genetic and evolutionary methods, to appearGoogle Scholar
  44. 44.
    Kramer O, Barthelmes A, Rudolph G (2009) Surrogate constraint functions for cma evolution strategies. In: Proceedings of the conference on artificial intelligence and automation, page to appearGoogle Scholar
  45. 45.
    Kramer O, Koch P (2007) Self-adaptive partially mapped crossover. In: Proceedings of the 9th conference on genetic and evolutionary computation—GECCO, New York, ACM Press, pp 1523–1523Google Scholar
  46. 46.
    Kramer O, Ting CK, Büning HK (2005) A new mutation operator for evolution strategies for constrained problems. In: Proceedings of the IEEE congress on evolutionary computation—CEC, pp 2600–2606Google Scholar
  47. 47.
    Kursawe F (1999) Grundlegende empirische Untersuchungen der Parameter von Evolutionsstrategien—Metastrategien. PhD thesis, University of DortmundGoogle Scholar
  48. 48.
    Liang KH, Yao X, Liu Y, Newton CS, Hoffman D (1998) An experimental investigation of self-adaptation in evolutionary programming. In: Proceedings of the 7th international conference on evolutionary programming VII—EP, Berlin, Springer, pp 291–300Google Scholar
  49. 49.
    Maruo MH, Lopes HS, Delgado MR (2005) Self-adapting evolutionary parameters: encoding aspects for combinatorial optimization problems. In: Proceedings of EvoCOP, pp 154–165Google Scholar
  50. 50.
    Mercer RE, Sampson JR (1978) Adaptive search using a reproductive metaplan. Kybernetes 7:215–228CrossRefGoogle Scholar
  51. 51.
    Mersch B, Glasmachers T, Meinicke P, Igel C (2006) Evolutionary optimization of sequence kernels for detection of bacterial gene starts. In: ICANN (2), pp 827–836Google Scholar
  52. 52.
    Meyer-Nieberg S, Beyer HG (2007) Self-adaptation in evolutionary algorithms. In: Lobo FG, Lima CF, Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Springer, BerlinGoogle Scholar
  53. 53.
    Mezura-Montes E, Palomeque-Ortiz AG (2009) Self-adaptive and deterministic parameter control in differential evolution for constrained optimization. Constraint-Handl Evol Optim 189:95–120CrossRefGoogle Scholar
  54. 54.
    Mühlenbein H (1992) How genetic algorithms really work: mutation and hillclimbing. In: Proceedings of the 2nd conference on parallel problem solving from nature—PPSN II, pp 15–26Google Scholar
  55. 55.
    Nannen V, Eiben A (2006) A method for parameter calibration and relevance estimation in evolutionary algorithms. In: Proceedings of the 8th conference on genetic and evolutionary computation—GECCO, New York, ACM Press, pp 183–190Google Scholar
  56. 56.
    Nannen V, Eiben A (2007) Relevance estimation and value calibration of evolutionary algorithm parameters. In: IJCAI, pp 975–980Google Scholar
  57. 57.
    Ostermeier A, Gawelczyk A, Hansen N (1994) A derandomized approach to self adaptation of evolution strategies. Evol Comput 2(4):369–380CrossRefGoogle Scholar
  58. 58.
    Ostermeier A, Gawelczyk A, Hansen N (1995) A derandomized approach to self adaptation of evolution strategies. Evol Comput 2(4):369–380CrossRefGoogle Scholar
  59. 59.
    Preuss M, Bartz-Beielstein T (2007) Sequential parameter optimization applied to self-adaptation for binary-coded evolutionary algorithms. In: Parameter setting in evolutionary algorithms, studies in computational intelligence. Springer, pp 91–119Google Scholar
  60. 60.
    Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, StuttgartGoogle Scholar
  61. 61.
    Rechenberg I (1994) Evolutionsstrategie ’94. Frommann-Holzboog, StuttgartGoogle Scholar
  62. 62.
    Reed J, Toombs R, Barricelli NA (1967) Simulation of biological evolution and machine learning: I. selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. J Theor Biol 17:319–342CrossRefGoogle Scholar
  63. 63.
    Reinelt G (1991) Tsplib—a traveling salesman problem library. ORSA J Comput 3:376–384zbMATHGoogle Scholar
  64. 64.
    Rosenberg RS (1967) Simulation of genetic populations with biochemical properties. PhD thesis, University of MichiganGoogle Scholar
  65. 65.
    Rudolph G (2001) Self-adaptive mutations may lead to premature convergence. IEEE Trans Evol Comput 5(4):410–414CrossRefGoogle Scholar
  66. 66.
    Schaffer JD, Caruana R, Eshelman LJ, Das R (1989) A study of control parameters affecting online performance of genetic algorithms for function optimization. In: Proceedings of the 3rd international conference on genetic algorithms—ICGA 1989, pp 51–60Google Scholar
  67. 67.
    Schaffer JD, Morishima A (1987) An adaptive crossover distribution mechanism for genetic algorithms. In: Proceedings of the second international conference on genetic algorithms on genetic algorithms and their application, Hillsdale, NJ, USA, L. Erlbaum Associates Inc, pp 36–40Google Scholar
  68. 68.
    Schwefel H-P (1974) Adaptive Mechanismen in der biologischen Evolution und ihr Einflus auf die Evolutionsgeschwindigkeit. Interner Bericht der Arbeitsgruppe Bionik und Evolutionstechnik am Institut fnr Mess- und Regelungstechnik, TU BerlinGoogle Scholar
  69. 69.
    Schwefel HP (1995) Evolution and Optimum Seeking. Sixth-generation computer technology. Wiley Interscience, New YorkGoogle Scholar
  70. 70.
    Semenov MA, Terkel DA (2003) Analysis of convergence of an evolutionary algorithm with self-adaptation using a stochastic lyapunov function. Evol Comput 11(4):363–379CrossRefGoogle Scholar
  71. 71.
    Smith J (2001) Modelling GAs with self adaptive mutation rates. In: Proceedings of the genetic and evolutionary computation conference, pp 599–606Google Scholar
  72. 72.
    Smith J, Fogarty TC (1996) Recombination strategy adaptation via evolution of gene linkage. In: Proceedings of the IEEE congress on evolutionary computation—CEC, pp 826–831Google Scholar
  73. 73.
    Smith J, Fogarty TC (1996) Self adaptation of mutation rates in a steady state genetic algorithm. In: Proceedings of the international conference on evolutionary computation—ICEC, pp 318–323Google Scholar
  74. 74.
    Spears WM (1995) Adapting crossover in evolutionary algorithms. In: McDonnell JR, Reynolds RG, Fogel DB (eds) Proceedings of the fourth annual conference on evolutionary programming, Cambridge, MIT Press, pp 367–384Google Scholar
  75. 75.
    Stone C, Smith J (2002) Strategy parameter variety in self-adaptation of mutation rates. In: Proceedings of the genetic and evolutionary computation conference—GECCO, San Francisco, Morgan Kaufmann Publishers Inc, pp 586–593Google Scholar
  76. 76.
    Weinberg R (1970) Computer simulation of a living cell. PhD thesis, University of MichiganGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations