Evolutionary Intelligence

, 2:21 | Cite as

Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems

  • Michela Antonelli
  • Pietro Ducange
  • Beatrice Lazzerini
  • Francesco Marcelloni
Special Issue

Abstract

In this paper, we propose a multi-objective evolutionary algorithm (MOEA) to generate Mamdani fuzzy rule-based systems with different trade-offs between accuracy and complexity by learning concurrently granularities of the input and output partitions, membership function (MF) parameters and rules. To this aim, we introduce the concept of virtual and concrete partitions: the former is defined by uniformly partitioning each linguistic variable with a fixed maximum number of fuzzy sets; the latter takes into account, for each variable, the number of fuzzy sets determined by the evolutionary process. Rule bases and MF parameters are defined on the virtual partitions and, whenever a fitness evaluation is required, mapped to the concrete partitions by employing appropriate mapping strategies. The implementation of the MOEA relies on a chromosome composed of three parts, which codify the partition granularities, the virtual rule base and the membership function parameters, respectively, and on purposely-defined genetic operators. The MOEA has been tested on three real-world regression problems achieving very promising results. In particular, we highlight how starting from randomly generated solutions, the MOEA is able to determine different granularities for different variables achieving good trade-offs between complexity and accuracy.

Keywords

Accuracy-interpretability trade-off Granularity learning Mamdani fuzzy rule-based systems Multi-objective evolutionary algorithms Piecewise linear transformation 

References

  1. 1.
    Casillas J, Cordon O, Herrera F, Magdalena L (eds) (2003) Interpretability issues in fuzzy modeling. Springer, BerlinMATHGoogle Scholar
  2. 2.
    Casillas J, Herrera F, Pérez R, Del Jesus MJ, Villar P (2007) Special issue on genetic fuzzy systems and the interpretability-accuracy trade-off. Int J Approx Reason 44(1):1–3CrossRefGoogle Scholar
  3. 3.
    Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intell 1:27–46CrossRefGoogle Scholar
  4. 4.
    Ishibuchi H (2007) Multiobjective genetic fuzzy systems: review and future research directions. In: Proceedings of the 2007 international conference on fuzzy systems, London, 23–26 July, pp 1–6Google Scholar
  5. 5.
    Cordón O, Herrera F, Villar P (2000) Analysis and guidelines to obtain a good uniform fuzzy partition granularity for fuzzy rule-based systems using simulated annealing. Int J Approx Reason 25(3):187–215MATHCrossRefGoogle Scholar
  6. 6.
    Botta A, Lazzerini B, Marcelloni F, Stefanescu D (2009) Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Comput 13(5):437–449CrossRefGoogle Scholar
  7. 7.
    Alcalá R, Gacto MJ, Herrera F, Alcalá-Fdez J (2007) A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. Int J Uncertain Fuzziness Knowl Based Syst 15(5):521–537CrossRefGoogle Scholar
  8. 8.
    Gacto MJ, Alcalá R, Herrera F (2009) Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. Soft Comput 13(5):419–436CrossRefGoogle Scholar
  9. 9.
    Alcalá R, Ducange P, Herrera F, Lazzerini B, Marcelloni F (2009) A multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems. IEEE Trans Fuzzy Syst 17(5):1106–1122Google Scholar
  10. 10.
    Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44(1):4–31MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Antonelli M, Ducange P, Lazzerini B, Marcelloni F (2009) Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework. Int J Approx Reason 50(7):1066–1080CrossRefGoogle Scholar
  12. 12.
    Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13MATHCrossRefGoogle Scholar
  13. 13.
    Klawonn F (2006) Reducing the number of parameters of a fuzzy system using scaling functions. Soft Comput 10(9):749–756CrossRefGoogle Scholar
  14. 14.
    Pedrycz W, Gomide F (2007) Fuzzy systems engineering: toward human-centric computing. Wiley-IEEE Press, New JerseyGoogle Scholar
  15. 15.
    Cococcioni M, Ducange P, Lazzerini B, Marcelloni F (2007) A Pareto-based multi-objective evolutionary approach to the identification of Mamdani fuzzy systems. Soft Comput 11(11):1013–1031CrossRefGoogle Scholar
  16. 16.
    Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterMATHGoogle Scholar
  17. 17.
    Coello Coello CA, Lamont GB (2004) Applications of multi-objective evolutionary algorithms. World Scientific, SingaporeMATHGoogle Scholar
  18. 18.
    Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst 89(2):135–150CrossRefGoogle Scholar
  19. 19.
    Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst 141(1):59–88MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pulkkinen P, Koivisto H (2008) Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms. Int J Approx Reason 48:526–543CrossRefGoogle Scholar
  21. 21.
    Pulkkinen P, Hytönen J, Koivisto H (2008) Developing a bioaerosol detector using hybrid genetic fuzzy systems. Eng Appl Artif Intell 21(8):1330–1346CrossRefGoogle Scholar
  22. 22.
    Ducange P, Lazzerini B, Marcelloni F (2009) Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. Soft Comput. doi: 10.1007/s00500-009-0460-y
  23. 23.
    Knowles JD, Corne DW (2002) Approximating the non dominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149–172CrossRefGoogle Scholar
  24. 24.
    Alcalá R, Alcalá-Fdez J, Herrera F (2007) A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans Fuzzy Syst 15(4):616–635CrossRefGoogle Scholar
  25. 25.
    Herrera F, Martinez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8(6):746–752CrossRefMathSciNetGoogle Scholar
  26. 26.
    Deb K, Pratab A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  27. 27.
    Alcalá R, Alcalá-Fdez J, Herrera F, Otero J (2007) Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation. Intern J Approx Reason 44:45–64MATHCrossRefGoogle Scholar
  28. 28.
    Ishibuchi H et al (1995) Selecting fuzzy if–then rules for classification problems using genetic algorithms. IEEE Trans Fuzzy Syst 3(3):260–270CrossRefMathSciNetGoogle Scholar
  29. 29.
    Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2):81–97CrossRefGoogle Scholar
  30. 30.
    Cordón O, Herrera F, Sanchez L (1999) Solving electrical distribution problems using hybrid evolutionary data analysis techniques. Appl Intell 10:5–24CrossRefGoogle Scholar
  31. 31.
    Cordón O, Herrera F, Villar P (2001) Generating the knowledge base of a fuzzy rule-based system by genetic learning of the data base. IEEE Trans Fuzzy Syst 9(4):667–674CrossRefGoogle Scholar
  32. 32.
    Cordón O, Herrera F, Magdalena L, Villar P (2001) A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base. Inf Sci 136:85–107MATHCrossRefGoogle Scholar
  33. 33.
    Altay Guvenir H, Uysal I (2000) Bilkent University function approximation repository. http://funapp.cs.bilkent.edu.tr

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michela Antonelli
    • 1
  • Pietro Ducange
    • 1
  • Beatrice Lazzerini
    • 1
  • Francesco Marcelloni
    • 1
  1. 1.Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, TelecomunicazioniUniversity of PisaPisaItaly

Personalised recommendations