Evolutionary Intelligence

, Volume 1, Issue 3, pp 187–207 | Cite as

MENNAG: a modular, regular and hierarchical encoding for neural-networks based on attribute grammars

Research Paper

Abstract

Recent work in the evolutionary computation field suggests that the implementation of the principles of modularity (functional localization of functions), repetition (multiple use of the same sub-structure) and hierarchy (recursive composition of sub-structures) could improve the evolvability of complex systems. The generation of neural networks through evolutionary algorithms should in particular benefit from an adapted use of these notions. We have consequently developed modular encoding for neural networks based on attribute grammars (MENNAG), a new encoding designed to generate the structure of neural networks and parameters with evolutionary algorithms, while explicitly enabling these three above-mentioned principles. We expressed this encoding in the formalism of attribute grammars in order to facilitate understanding and future modifications. It has been tested on two preliminary benchmark problems: cart-pole control and robotic arm control, the latter being specifically designed to evaluate the repetition capabilities of an encoding. We compared MENNAG to a direct encoding, ModNet, NEAT, a multi-layer perceptron with a fixed structure and to reference controllers. Results show that MENNAG performs better than comparable encodings on both problems, suggesting a promising potential for future applications.

Keywords

Modular neural-networks Evolutionary algorithms Evolutionary robotics Attribute grammars 

References

  1. 1.
    Anderson JR (2007) How can the human mind occur in the physical Universe? In: The modular organization of the mind. Oxford University Press, New York, pp 45–91Google Scholar
  2. 2.
    de Beeck HPO, Haushofer J, Kanwisher NG, et al (2008) Interpreting fMRI data: maps, modules and dimensions. Nat Rev Neurosci 9:123–135CrossRefGoogle Scholar
  3. 3.
    Boers JWE, Kuiper H, Happel BLM, Springhuizen-Kuiper IG (1993) Designing modular artificial neural networks. Technical report, Rijksuniversiteit te LeidenGoogle Scholar
  4. 4.
    Bowers CP, Bullinaria JA (2005) Embryological modelling of the evolution of neural architecture. In: A Cangelosi GB, Borisyuk R (eds) Modeling language, cognition and action. World Scientific, Singapore, pp 375–384Google Scholar
  5. 5.
    Buessler JL, Urban JP (2002) Biologically inspired robot behavior engineering. In: Modular neural architectures for robotics. Springer, HeidelbergGoogle Scholar
  6. 6.
    Bullinaria JA (2007) Understanding the emergence of modularity in neural systems. Cogn Sci 31(4):673–695Google Scholar
  7. 7.
    Cangelosi A, Parisi D, Nolfi S (1994) Cell division and migration in a ‘genotype’ for neural networks. Netw Comput Neural Syst 5(4):497–515MATHCrossRefGoogle Scholar
  8. 8.
    Cantu-Paz E, Kamath C (2005) An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems. IEEE Trans Syst Man Cybern Part B 35(5):915–927CrossRefGoogle Scholar
  9. 9.
    Cliff D, Harvey I, Husbands P (1992) Incremental evolution of neural network architectures for adaptive behaviour. Technical report. Cognitive science research paper CSRP256, Brighton BN1 9QH, England, UKGoogle Scholar
  10. 10.
    D’Ambrosio D, Stanley K (2007) A novel generative encoding for exploiting neural network sensor and output geometry. In: Proceedings of the 9th annual conference on genetic and evolutionary computation, pp 974–981Google Scholar
  11. 11.
    Deb K (2001) Multi-objectives optimization using evolutionnary algorithms. Wiley, New YorkGoogle Scholar
  12. 12.
    Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Proceedings of the third international conference on genetic algorithms. Morgan Kaufmann Publishers, San Francisco, pp 42–50Google Scholar
  13. 13.
    Doncieux S (2003) Évolution de contrôleurs neuronaux pour animats volants : méthodologie et applications. PhD thesis, LIP6/AnimatLab, Université Pierre et Marie Curie, Paris, FranceGoogle Scholar
  14. 14.
    Doncieux S, Meyer JA (2004a) Evolution of neurocontrollers for complex systems: alternatives to the incremental approach. In: Proceedings of the international conference on artificial intelligence and applications (AIA 2004)Google Scholar
  15. 15.
    Doncieux S, Meyer JA (2004b) Evolving modular neural networks to solve challenging control problems. In: Proceedings of the fourth international ICSC symposium on engineering of intelligent systems (EIS 2004)Google Scholar
  16. 16.
    Doncieux S, Meyer JA (2005) Evolving PID-like neurocontrollers for non-linear control problems. Int J Control Intell Syst (IJCIS) Spec Issue Nonlinear Adapt PID Control 33(1):55–62Google Scholar
  17. 17.
    Fukutani I, Vaario J (1997) The effect of environment to genetic growth. In: International symposium on system life, July 21–22, 1997, Tokyo, Japan, pp 227–232Google Scholar
  18. 18.
    Gallinari P (1998) Modular neural net systems, training of the handbook of brain theory and neural networks table of contents, pp 582–585Google Scholar
  19. 19.
    García-Arnau M, Manrique D, Ríos J, Rodríguez-Patón A (2007) Initialization method for grammar-guided genetic programming. Knowl Based Syst 20(2):127–133CrossRefGoogle Scholar
  20. 20.
    Gauci J, Stanley K (2007) Generating large-scale neural networks through discovering geometric regularities. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp 997–1004Google Scholar
  21. 21.
    Geva S, Sitte J (1993) A cartpole experiment benchmark for trainable controllers. Control Systems Mag IEEE 13(5):40–51CrossRefGoogle Scholar
  22. 22.
    Gomez FJ, Schmidhuber J, Miikkulainen R (2006) Efficient non-linear control through neuroevolution. In: Proceedings of the European conference on machine learning (ECML-06, Berlin), pp 654–662Google Scholar
  23. 23.
    Grönroos M (1999) A comparison of some methods for evolving neural networks. In: Proceedings of the genetic and evolutionary computation conference, vol 2. Morgan Kaufmann, Menlo Park, p 1442Google Scholar
  24. 24.
    Gruau F (1995) Automatic definition of modular neural networks. Adapt Behav 3(2):151–183CrossRefGoogle Scholar
  25. 25.
    Gruau F, Whitley D, Pyeatt L (1996) A comparison between cellular encoding and direct encoding for genetic neural networks. In: John Koza R, David Goldberg E, David Fogel B, Rick Riolo L (eds) Genetic programming 1996: proceedings of the first annual conference. MIT Press, Stanford University, CA, pp 81–89Google Scholar
  26. 26.
    Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402(6761):C47–C52CrossRefGoogle Scholar
  27. 27.
    Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, MIGoogle Scholar
  28. 28.
    Hornby G (2005) Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design. In: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM Press, New York, pp 1729–1736Google Scholar
  29. 29.
    Hornby G, Pollack J (2002) Creating high-level components with a generative representation for body–brain evolution. Artif Life 8(3):223–246CrossRefGoogle Scholar
  30. 30.
    Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging. Sinauer Associates, SunderlandGoogle Scholar
  31. 31.
    Hussain T (2003) Attribute grammar encoding of the structure and behaviour of artificial neural networks. PhD thesis, Queen’s UniversityGoogle Scholar
  32. 32.
    Igel C (2003) Neuroevolution for reinforcement learning using evolution strategies. In: The 2003 congress on evolutionary computation, CEC’03, vol 4. IEEE Press, Ne wYork, pp 2588–2595Google Scholar
  33. 33.
    de Jong E, Thierens D (2004) Exploiting modularity, hierarchy, and repetition in variable-length problems. In: Proceedings of the genetic and evolutionary computation conference, GECCO-04. Springer, Heidelberg, pp 1030–1041Google Scholar
  34. 34.
    Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci 102(39):13,773–13,778CrossRefGoogle Scholar
  35. 35.
    Kitano H (1990) Designing neural networks using genetic algorithms with graph generation system. Complex Syst 4:461–476MATHGoogle Scholar
  36. 36.
    Knuth D (1968) Semantics of context-free languages. Theory Comput Syst 2(2):127–145MATHMathSciNetGoogle Scholar
  37. 37.
    Kodjabachian J, Meyer JA (1995) Evolution and development of control architectures in animats. Robot Auton Syst 16:161–182CrossRefGoogle Scholar
  38. 38.
    Kodjabachian J, Meyer JA (1997) Evolution and development of neural networks controlling locomotion, gradient-following, and obstacle-avoidance in artificial insects. IEEE Trans Neural Netw 9:796–812CrossRefGoogle Scholar
  39. 39.
    Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, CambridgeGoogle Scholar
  40. 40.
    Landau S, Doncieux S, Drogoul A, Meyer JA (2002) SFERES: un framework pour la conception de systèmes multi-agents adaptatifs. Technique et Science Informatiques 21(4):427–446Google Scholar
  41. 41.
    Lindenmayer A (1968) Mathematical models for cellular interaction in development, parts i and ii. Journal of theoretical biology 18(18):280–315CrossRefGoogle Scholar
  42. 42.
    Lipson H (2004) Principles of Modularity, Regularity, and Hierarchy for Scalable Systems. In: Genetic and evolutionary computation conference (GECCO’04) workshop on modularity, regularity and hierarchyGoogle Scholar
  43. 43.
    Lipson H, Pollack JB, Suh NP (2002) On the origin of modular variation. Evolution 56(8):1549–1556Google Scholar
  44. 44.
    Luke S, Spector L (1996) Evolving graphs and networks with edge encoding: preliminary report. In: Late breaking papers at the genetic programming 1996 conference, pp 117–124Google Scholar
  45. 45.
    Mattiussi C, Floreano D (2004) Evolution of analog networks using local string alignment on highly reorganizable genomes. In: Evolvable hardware, 2004. Proceedings of conference on NASA/DoD 2004, pp 30–37Google Scholar
  46. 46.
    Mattiussi C, Floreano D (2007) Analog genetic encoding for the evolution of circuits and networks. IEEE Trans Evol Comput 11:596–607CrossRefGoogle Scholar
  47. 47.
    Michel O, Clergue M, Collard P (1997) Artificial neurogenesis: Applications to the cart-pole problem and to an autonomous mobile robot. International Journal on Artificial Intelligence Tools 6(4):613–634CrossRefGoogle Scholar
  48. 48.
    Miller GF, Todd PM, Hedge SU (1989) Designing neural networks using genetic algorithms. In: Proceedings of the third international conference on artificial intelligence. Morgan Kaufmann, Menlo Park, pp 762–767Google Scholar
  49. 49.
    Mouret JB, Doncieux S, Meyer JA (2006) Incremental evolution of target-following neuro-controllers for flapping-wing animats. In: Nolfi S, Baldassare G, Calabretta R, Hallam J, Marocco D, Meyer JA, Miglino O, Parisi D (eds) From animals to animats: proceedings of the 9th international conference on the simulation of adaptive behavior (SAB), Rome, Italy, pp 606–618Google Scholar
  50. 50.
    Nolfi S, Parisi D (1998) “Genotypes” for neural networks. The handbook of brain theory and neural networks, pp 431–434Google Scholar
  51. 51.
    Paakki J (1995) Attribute grammar paradigms: a high-level methodology in language implementation. ACM Comput Surv (CSUR) 27(2):196–255CrossRefGoogle Scholar
  52. 52.
    Pasemann F, Dieckmann U (1997) Evolved neurocontrollers for pole-balancing. Biol Artif Comput Neurosci Technol Proc IWANN 97:1279–1287CrossRefGoogle Scholar
  53. 53.
    Reisinger J, Miikkulainen R (2007) Acquiring evolvability through adaptive representations. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM Press, New York, pp 1045–1052Google Scholar
  54. 54.
    Reisinger J, Stanley K, Miikkulainen R (2004) Evolving reusable neural modules. In: Proceedings of the genetic and evolutionary computation conference (GECCO-2004). Springer, Heidelberg, pp 69–81Google Scholar
  55. 55.
    Siddiqi A (1998) Comparison of matrix rewriting versus direct encoding for evolving neural networks. In: The 1998 IEEE international conference on evolutionary computation, ICEC’98, pp 392–397Google Scholar
  56. 56.
    Simon H (1962) The architecture of complexity. Proc Am Philos Soc 106(6):467–482Google Scholar
  57. 57.
    Sims K (1994) Evolving 3d morphology and behavior by competition. In: Brooks RA, Maes P (eds) Proceedings of the fourth international workshop on artificial life. The MIT Press, Cambridge, pp 28–39Google Scholar
  58. 58.
    Stanley K, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127CrossRefGoogle Scholar
  59. 59.
    Stanley KO (2006) Comparing artificial phenotypes with natural biological patterns. In: Proceedings of the genetic and evolutionary computation conference (GECCO) workshop program, New York, NYGoogle Scholar
  60. 60.
    Teuber HL (1955) Physiological psychology. Annu Rev Psychol 6(1):267–296CrossRefGoogle Scholar
  61. 61.
    Wagner G, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50(3):967–976CrossRefGoogle Scholar
  62. 62.
    Watson R (2005) Modular interdependency in complex dynamical systems. Artif Life 11(4):445–457CrossRefGoogle Scholar
  63. 63.
    Widrow B (1987) The original adaptive neural net broom-balancer. In: International symposium on circuits and systems, pp 351–357Google Scholar
  64. 64.
    Wieland A (1991) Evolving neural network controllers for unstable systems. In: Proceedings of the international joint conference on neural networks (Seattle, WA). IEEE, Piscataway, pp 667–673Google Scholar
  65. 65.
    Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Université Pierre et Marie Curie, Paris 6ParisFrance

Personalised recommendations