Art Forms in Nature: radiolaria from Haeckel and Blaschka to 3D nanotomography, quantitative image analysis, evolution, and contemporary art

  • John R. JungckEmail author
  • Roger Wagner
  • Denis van Loo
  • Bathsheba Grossman
  • Noppadon Khiripet
  • Jutarat Khiripet
  • Wongarnet Khantuwan
  • Margeurita Hagan
Original Article


The illustrations of the late nineteenth-/twentieth-century scientist/artist Ernst Haeckel, as depicted in his book Art Forms in Nature (originally in German as Kunstformen der Natur, 1898–1904), have been at the intersection of art, biology, and mathematics for over a century. Haeckel’s images of radiolaria (microscopic protozoans described as amoeba in glass houses) have influenced various artists for over a century (glass artists Leopold and Rudolph Blaschka; sculptor Henry Moore; architects Rene Binet, Zaha Hadid, Antoni Gaudi, Chris Bosse and Frank Gehry; and designers–filmmakers Charles and Ray Eames). We focus on this history and extend the artistic, biological, and mathematical contributions of this interdisciplinary legacy by going beyond the 3D visual, topological, and geometric analyses of radiolaria to include the nanoscale with graph theory, spatial statistics, and computational geometry. We analyze multiple visualizations of radiolaria generated through Haeckel’s images, light microscopy, scanning electron microscopy, micro- and nanotomography, and three-dimensional computer rendering. Mathematical analyses are conducted using the image analysis package “Ka-me: A Voronoi Image Analyzer.” Further analyses utilize three-dimensional printing, laser etched crystalline glass art, and sculpture. Open sharing of three-dimensional nanotomography of radiolaria and other protozoa through MorphoSource enables new possibilities for artists, architects, paleontologists, structural morphologists, taxonomists, museum curators, and mathematical biologists. Distinctively, newer models of radiolaria fit into a larger context of productive interdisciplinary collaboration that continues Haeckel’s legacy that lay a foundation for new work in biomimetic design and additive manufacturing where artistic and scientific models mutually and robustly generate wonder, beauty, utility, curiosity, insight, environmentalism, theory, and questions.


Haeckel Radiolaria 3D Nanotomography 3D printing Sculpture Topological and geometric analysis Voronoi diagrams Delaunay triangulations Computational geometry Spatial statistics Interdisciplinarity STEAM 



Partial funding for this work was provided by grants to the first author by the Unidel Foundation of the University of Delaware and the Delaware Department of Education Math Science Partnership. Sabbatical support for the first author at the National Institute for Mathematical Biology Synthesis Center (NIMBioS) at the University of Tennessee and at the National Electronics and Computer Technology Center (NECTEC), Bangkok, Thailand, is greatly appreciated. This work would have been impossible except for the incredible assistance provided by Tim Leefeldt. Jordan Posner and J. P. Reindfleisch did some of the scanning electron microscopy and image analysis as student projects. Dr. Doug Boyer at Duke University was especially helpful in building MorpoSource data files for the 3D nanotomography data and 3D print files. Scanner time on a Zeiss XRadia 819 Ultra machine was generously provided by the Zeiss Facility at Thornwood, New York.


  1. Aita Y, Suzuki N, Ogane K, Sakai T, Lazarus D, Young J, Tanimura Y (2009) Haeckel Radiolaria Collection and the HMS Challenger Plankton Collection. Joint Haeckel and Ehrenberg Project: reexamination of the Haeckel and Ehrenberg microfossil collection as a historical and scientific legacy. Japan National Museum of Nature and Science, Monograph, Tokyo, vol 40, pp 35–45Google Scholar
  2. Ball A, Abel R, Ambers J, Brierley L, Howard L (2011) Micro-computed tomography applied to museum collections. Microsc Microanal 17(S2):1794–1795CrossRefGoogle Scholar
  3. Bandyopadhyay A, Heer B (2018) Additive manufacturing of multi-material structures. Mater Sci Eng R Rep 129:1–16CrossRefGoogle Scholar
  4. Bergdoll B (2005) Les Esquisses Decoratives de Rene Binet’. Rene Binet 1866–1911, un architecte de la Belle Epoque100–09Google Scholar
  5. Bergdoll B (2007) Of crystals, cells, and strata: natural history and debates on the form of a new architecture in the nineteenth century. Archit Hist 50:1–29CrossRefGoogle Scholar
  6. Bertini M, Verveniotou E, Lowe M, Giles Miller C (2016) Laser ablation inductively coupled plasma mass spectrometry investigation of late 19th Century Blaschka marine invertebrate glass models. J Archaeol Sci Rep 6:506–517Google Scholar
  7. Bertol D (2015) The making of geometry. Procedia Technol 20:39–45CrossRefGoogle Scholar
  8. Binet R (1902) Esquisses décoratives. Librarie Centrale des Beaux-Arts, ParisGoogle Scholar
  9. Bouligand Y (2004) The renewal of ideas about biomineralisations. CR Palevol 3(6–7):617–628CrossRefGoogle Scholar
  10. Brain RM (2009) Protoplasmania: Huxley, Haeckel and the vibratory organism in late nineteenth- century science and art. In: Larson B, Brauer F (eds) The art of evolution: darwin, darwinisms, and visual culture. Dartmouth College Press, Hanover, pp 92–123Google Scholar
  11. Breidbach O (1998) Brief instructions for viewing Haeckel’s pictures. In: Haeckel E, Breidbach O, Hartman R, Eibl-Eibesfeldt I (eds) Art Forms in Nature: The Prints of Ernst Haeckel One Hundred Color Plates (monograph). Prestel, Munich, pp 9–18Google Scholar
  12. Breidbach O (2002) The former synthesis—some remarks on the typological background of Haeckel’s ideas about evolution. Theory Biosci 121(3):280–296Google Scholar
  13. Breidbach O (2003) The beauties and the beautiful—some considerations from the perspective of neuronal aesthetics. In: Voland E, Grammer K (eds) Evolutionary aesthetics. Springer, Berlin, pp 39–68CrossRefGoogle Scholar
  14. Breidbach O (2005) Art forms from the ocean: the radiolarian prints of Ernst Haeckel. Prestel, MunichGoogle Scholar
  15. Brierley L (2009) Art Forms in nature examination and conservation of a blaschka glass model of the protozoan Aulosphaera elegantissima. Stud Conserv 54(4):255–267CrossRefGoogle Scholar
  16. Brill ER, Huber F (2016) Sea creatures in glass: the Blaschka Marine Animals at Harvard. Scala Arts Publishers, New YorkGoogle Scholar
  17. Bueno E (2009) Algorithmic Form Generation of a Radiolarian Pavilion. Int J Archit Comput 7(4):677–688CrossRefGoogle Scholar
  18. Ceccato C (1999) The architect as toolmaker: computer-based generative design tools and methods. In: CAADRIA ‘99 (Proceedings of the fourth conference on computer aided architectural design research in asia/ISBN 7-5439-1233-3) Shanghai (China) 5–7 May 1999, pp 295–304Google Scholar
  19. Cohen PS, Naginski E (2014) The return of nature: sustaining architecture in the face of sustainability. Routledge, AbingdonGoogle Scholar
  20. Deane W (1894) The Ware Collection of Blaschka glass models of flowers at Harvard. Bot Gaz 19(4):144–148CrossRefGoogle Scholar
  21. Delue RZ (2010) A combined review of: Darwins Korallen: Frühe Evolutionsmodelle und die Tradition der Naturgeschichte; Endless Forms: Charles Darwin, Natural Science, and the Visual Arts; The Art of Evolution: Darwin, Darwinisms, and Visual Culture; and Darwin’s Pictures: Views of Evolutionary Theory, 1837–1874. Art Bull 92(4):386–391Google Scholar
  22. Dolan JR, Le Peter J, Williams B, Evans DW, Roberts DJ, Thomas DN (2015) Art Forms from the Abyss: Ernst Haeckel’s Images from the HMS Challenger Expedition. Prestel, Munich, pp 121–122. ISBN 978-3791381411Google Scholar
  23. Donofrio M (2016) Topology optimization and advanced manufacturing as means for the design of sustainable building components. Procedia Eng 145:638–645CrossRefGoogle Scholar
  24. Dyer R (2008) Learning through glass: the Blaschka marine models in North American post-secondary education. Hist Biol 20(1):29–37CrossRefGoogle Scholar
  25. Dyke GJ, Julia S (2005) The search for a ‘smoking gun’: No need for an alternative to the Linnean system of classification. In: Minelli A (ed) Animal Names, Istituto Veneto di Scienze, Lettere ed Arti, Venice, pp 49–65Google Scholar
  26. Emmer M (2002) Mathland: from topology to virtual architecture. In: Emmer M (ed) Mathematics and culture II. Visual perfection: mathematics and creativity. Springer, Berlin, pp 65–78Google Scholar
  27. Gamwell L (2003) Beyond the visible-microscopy, nature, and art. Science 299(5603):49–50CrossRefGoogle Scholar
  28. Gardner M (2001) The colossal book of mathematics: classical puzzles, paradoxes, and problems. In: Mathematical zoo, WW. North, New York, p 643 (Originally GARDNER, MARTIN. "MATHEMATICAL ZOO OF ASTOUNDING CRITTERS, IMAGINARY AND OTHERWISE." Scientific American 238, no. 6 (1978): 18.)Google Scholar
  29. Gould SJ (1971) D’Arcy Thompson and the science of form. In: New literary history 2 (2) form and its alternatives (Winter), pp 229–258Google Scholar
  30. Guex J, O’Dogherty L, Carter ES, Goričan Š, Bartolini A (2012) Geometrical transformations of selected Mesozoic radiolarians. Geobios 45(6):541–554CrossRefGoogle Scholar
  31. Hackethal S (2008) The Blaschka models of the Humboldt University of Berlin and their historical context. Hist Biol 20(1):19–28CrossRefGoogle Scholar
  32. Haeckel E (1862) Die Radiolarien (Rhizopoda Radiolaria). Eine Monographie. Atlas von Fünf und Dreissig Kupfertafeln. Verlag von Georg Reimer, Berlin. [Reprinted as: Haeckel E (2005) Art forms from the ocean: the Radiolarian atlas of 1862. Prestel Verlag, Munich and London]Google Scholar
  33. Haeckel E (1866). Generelle Morphologie der Organis men. Allgemeine Grundzüge der organischen Formen-Wis senschaft, mechanisch begründet durch die von Charles Dar win reformierte Deszendenztheorie. Georg Reimer, (v. 1, Allgemeine Anatomie der Organismen; v. 2, All gemeine Entwicklungsgeschichte der Organism), BerlinGoogle Scholar
  34. Haeckel E (1878). Das Protistenreich: Eine populäre Uebersicht über das Formengebiet der niedersten Lebewesen. LeipzigGoogle Scholar
  35. Haeckel E (1887) Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. In: Report on the scientific results of the voyage of the H.M.S. Challenger, Zoology, 18, i–clxxxviii + 1–1803Google Scholar
  36. Haeckel E (1888) Die Radiolarien. Eine Monographie, Berlin 1862–88, Staatsbibliothek zu Berlin – Preußischer Kulturbesitz, Abteilung historische DruckeGoogle Scholar
  37. Haeckel E (1899) Kunstformen der Natur. Verlag des Bibliographischen Instituts, LeipzigCrossRefGoogle Scholar
  38. Haeckel E, Breidbach O, Hartman R, Eibl-Eibesfeldt I (1998) Art Forms in Nature: The Prints of Ernst Haeckel One Hundred Color Plates (monograph). Prestel, MunichGoogle Scholar
  39. Hart G (2000) Reticulated geodesic constructions. Comput Gr 24:907–910CrossRefGoogle Scholar
  40. Hopwood N, Chadarevian S (2004) Dimensions of modelling. The third dimension of science, Models, pp 1–15Google Scholar
  41. Hufnagel H, Jäger F, Wanlin N (2018) Une approche pluridisciplinaire d’Ernst Haeckel. Arts Savoirs 9:1–14Google Scholar
  42. Kaniari A (2013) D’Arcy Thompson’s On Growth and Form and the Concept of Dynamic Form in Postwar Avant-Garde Art Theory. Interdisc Sci Rev 38(1):63–73CrossRefGoogle Scholar
  43. Khiripet N, Khantuwan W, Jungck JR (2012) Ka-me: a Voronoi image analyzer. Bioinformatics 28(13):1802–1804CrossRefGoogle Scholar
  44. Kimoto K, Osamu S, Harumasa K, Masahide W, Tomohisa I, Tomohiro I, Naomi H, Makio H (2013) Seasonal carbonate dissolution at the water column in the North Pacific: the evidence from the Micro-focus X-ray CT Technology. ESSAS Annual Science Meeting, Hakodate, Japan. ( )
  45. Knoll AH, Benjamin K (2015) Protistan Skeletons: a geologic history of evolution and constraint. In: Hamm C (ed) Evolution of lightweight structures: analyses and technical applications. Biologically-inspired systems, vol 6. Springer, Dordrecht, pp 1–16CrossRefGoogle Scholar
  46. Krausse E (1993) L’lnfluence de Ernst Haeckel sur l’Art nouveau. In: Clair J (ed) L’ au corps: Artset sciences 1793-1993. Gallimard/Electa, ParisGoogle Scholar
  47. Krausse E (1995) Ernst Haeckel: Promorphologie und “evolutionistische” ästhetische Theorie - Konzept und Wirkung. In: Engels EM (Hrsg.) Die Rezeption von Evolutionstheorien im 19. Jahrhundert. Frankfurt/M. Suhrkamp Taschenbuch Wissenschaft; 1229, S 347–394Google Scholar
  48. Krausse E (2001) Natur als Kunstform - Kunstformen der Natur. Ernst Haeckels Einfluß auf die Architekten des Jugendstils. In: K Buchholz, R Latocha, H Peckmann, K Wolbert (eds), Die Lebensreform. Entwürfe zu Neugestaltung von Leben und Kunst um 1900. Band 1. Darmstadt, Häusser, pp 283–290Google Scholar
  49. Lazarus D (1986) Three-dimensional measurement of microfossil morphology. J Paleontol 60(4):960–964CrossRefGoogle Scholar
  50. Lazarus D (1994) Neptune: a marine micropaleontology database. Math Geol 26(7):817–832CrossRefGoogle Scholar
  51. Lazarus D (2005) A brief review of radiolarian research. Paläontologische Z 79(1):183–200CrossRefGoogle Scholar
  52. Lohmann GP (1983) Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. J Int Assoc Math Geol 15(6):659CrossRefGoogle Scholar
  53. Ludwig D (2013) Mediating objects: scientific and public functions of models in nineteenth-century biology. Hist Philos Life Sci 35(2):139–166Google Scholar
  54. Maartens A (2017) On Growth and Form in context–an interview with Matthew Jarron. Development 144(23):4199–4202CrossRefGoogle Scholar
  55. Malcolm Shick J (2008) Toward an aesthetic marine biology. Art J 67(4):62–86CrossRefGoogle Scholar
  56. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382(6589):313CrossRefGoogle Scholar
  57. Matsuoka A, Yoshino T, Kishimoto N, Ishida N, Kurihara T, Kimoto K, Matsuura S (2012) Exact number of pore frames and their configuration in Mesozoic radiolarian Pantanellium: an application of X-ray micro-CT and layered manufacturing technology to micropaleontology. Mar Micropaleontol 88–89:36–40CrossRefGoogle Scholar
  58. McCartney K (1988) SILICO: a computer program for the three-dimensional measurement of silicoflagellate skeletons. Comput Geosci 14(1):99–111CrossRefGoogle Scholar
  59. Meier A (2016) Art Nouveau’s Deep Sea Muse. (
  60. Merkle A, Boone M, van Loo D (2018) In situ Dynamic X-ray Tomography in the Laboratory. Microsc Microanal 24:998–999CrossRefGoogle Scholar
  61. Mertins D (2017) Bioconstructivisms 1. In: Sabin JE, Jones PL (eds) LabStudio: design research between architecture and biology. Routledge, Abingdon, pp 3–16CrossRefGoogle Scholar
  62. Miller G, Lowe M (2008) The Natural History Museum Blaschka collections. Hist Biol 20:51–62CrossRefGoogle Scholar
  63. Moore R (1999) Appreciating natural beauty as natural. J Aesthet Educ 33(3):42–60CrossRefGoogle Scholar
  64. Morduhai-Boltovskoi DD (1936) Geometry of radiolaria. Univ, Fluchen. Zap. Rostov, p 8Google Scholar
  65. Morgan M, Morrison M (1999) Models as Mediators. Cambridge University Press, CambrideCrossRefGoogle Scholar
  66. Nakaseko K (1959) On Superfamily Liosphaericae (Radiolaria) from Sediments in the Sea Near Antarctica, Part I. Spec Publ Seto Mar Biol Lab 1(2):1–20Google Scholar
  67. O’Connor B (1996) Confocal laser scanning microscopy: a new technique for investigating and illustrating fossil Radiolaria. Micropaleontology 42(4):395–402CrossRefGoogle Scholar
  68. Oliver S, Kuperman A, Coombs N, Lough A, Ozin GA (1995) Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378(6552):47CrossRefGoogle Scholar
  69. Ozin GA (1997) Morphogenesis of biomineral and morphosynthesis of biomimetic forms. Acc Chem Res 30(1):17–27CrossRefGoogle Scholar
  70. Ozin GA (2000) Panoscopic materials: synthesis over ‘all’length scales. Chem Commun 6:419–432CrossRefGoogle Scholar
  71. Posner JK, Jungck JR (2012) Polygonal biological patterns: Do two dimensional laws apply to three dimensional curved surfaces? Beloit Biol 32:1–12Google Scholar
  72. Proctor R (2006) Architecture from the cell-soul: René Binet and Ernst Haeckel. J Archit 11(4):407–424CrossRefGoogle Scholar
  73. Proctor R, Breidbach O (2007) Rene Binet: from nature to form. Prestel, New YorkGoogle Scholar
  74. Reiling H (1998) The Blaschkas’ glass animal models: origins of design. J Glass Stud 40:106–126Google Scholar
  75. Richards RJ (2005) The foundation of Ernst Haeckel’s evolutionary project in morphology, aesthetics, and tragedy. In: Dessen P, Kemperiuk M (eds) The many faces of evolution in Europe, c. 1860–1914. Peters, LeuvenGoogle Scholar
  76. Richards RJ (2009) The tragic sense of Ernst Haeckel: his scientific and artistic struggles. In: Kort P, Hollein M, Frankfurt SK (eds) Darwin: art and the search for origins. Cologne, Wienand, pp 92–125Google Scholar
  77. Richeson DS (2012) Euler's Gem: the polyhedron formula and the birth of topology. Princeton University Press, Princeton, NJGoogle Scholar
  78. Richardson MK, Jeffery JE (2002) Editorial: Haeckel and modern biology. Theory Biosci 121:247–251CrossRefGoogle Scholar
  79. Rindfleisch JP, Jungck JR (2010) Spatial point analysis: correlations between geometric and topological data from biological samples. Beloit Biol 30(7):1–75Google Scholar
  80. Ritterbush PC (1968) The art of organic forms. Smithsonian Institution Press, Washington, DC, pp 64–65Google Scholar
  81. Robert JR (2008) The tragic sense of life: Ernst Haeckel and the struggle over evolutionary thought. University of Chicago Press, ChicagoGoogle Scholar
  82. Rossi-Wilcox SM, Whitehouse D (2007) Drawing upon nature: studies for the Blaschkas’ glass models. The Corning Museum of Glass, CorningGoogle Scholar
  83. Sabin JE, Jones PL (2008) Nonlinear systems biology and design: surface design. In: International conference ACADIA proceedingsGoogle Scholar
  84. Sabin JE, Jones PL (eds) (2017) LabStudio: design research between architecture and biology. Routledge, AbingdonGoogle Scholar
  85. Sakai T, Suzuki N, Ogane K, Lazarus D, Breidbach O, Bach T (2009) Haeckel’s Messina radiolarian collection housed in the Ernst-Haeckel-Haus. Natl Mus Nat Sci Monogr 40:47–54Google Scholar
  86. Scarr G (2010) Simple geometry in complex organisms. J Bodyw Mov Ther 14(4):424–444CrossRefGoogle Scholar
  87. Shaw MD, Szczepanski JZ, Murray SF, Hodge S, Vink CJ (2017) Ideas made glass: Blaschka glass models at Canterbury Museum. Rec Canterb Mus 31:5–84Google Scholar
  88. Shirley P, Wyman C (2017) Generating stratified random lines in a square. J Comput Gr Tech 6(2): 48–54.
  89. Sigwart JD (2008) Crystal creatures: context for the Dublin Blaschka Congress. Hist Biol 20(1):1–10CrossRefGoogle Scholar
  90. Stafford BM (1991) Body criticism: imagining the unseen in enlightenment art, science, and medicine. MIT Press, Cambridge, p 84Google Scholar
  91. Tsutsui H (2000) Digital characterization of silicoflagellate for numerical taxonomy. Geoinformatics 11(1):35–42CrossRefGoogle Scholar
  92. Tucker J (2010) Visualizing Darwinian evolution. Vic Stud 52(3):441–448CrossRefGoogle Scholar
  93. van Embden Andres MV, Turrin M (2009) “Structural DNA.” In: Southwest ACSA conference proceedings.
  94. Waddington CH (1951) The character of biological form. In: Whyte LL (ed) Aspects of form: a symposium on form in nature and art. Publishes, New York, Pelligrini and Cudahy, pp 43–52Google Scholar
  95. Wagner RC, John RJ, Denis VL (2015) Sub-micrometer X-ray tomography of radiolarians: computer modeling and skeletonization. Microscopy Today 23(5):18–23CrossRefGoogle Scholar
  96. Wertheim M (2007) A field guide to hyperbolic space: an exploration of the intersection of higher geometry and feminine handicraft. Institute for Figuring, Los AngelesGoogle Scholar
  97. Wertheim M (2009) Margaret Wertheim on the beautiful math of coral. TED talk.
  98. Willmann R, Voss J (2017) The art and science of Ernst Haeckel. Taschen. (See many images from the book at
  99. Wormer EJ (2018) Ernst Haeckel: Künstler und Wissenschaftler in Personalunion Fantastische Lebensformen. Orthop Rheuma 21(1):60–61CrossRefGoogle Scholar
  100. Yoshino T, Katsunori Kimoto N, Kishimoto AM, Kurihara T, Ishida N, Matsuura S (2009) A simple mathematical model for chamber arrangement of planktic foraminifera. FORMA 25:87–92Google Scholar
  101. Yoshino T, Matsuoka A, Kurihara T, Naoto Ishida N, Kishimoto KK, Matsuura S (2012) Application of Voronoi tessellation of spherical surface to geometrical models for skeleton forms for spherical radiolaria. FORMA 27:45–53Google Scholar
  102. Yoshino T, Matsuoka A, Kurihara T, Ishida N, Kishimoto N, Kimoto K, Matsuura S (2015) Polyhedron geometry of skeletons of Mesozoic radiolarian Pantanellium (Géométrie des polyèdres des squelettes des radiolaires mésozoïques du genre Pantanellium). Revue de micropaléontologie 58:51–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • John R. Jungck
    • 1
    • 2
    • 7
    Email author
  • Roger Wagner
    • 1
  • Denis van Loo
    • 3
  • Bathsheba Grossman
    • 4
  • Noppadon Khiripet
    • 5
  • Jutarat Khiripet
    • 5
  • Wongarnet Khantuwan
    • 5
  • Margeurita Hagan
    • 6
  1. 1.Departments of Biological SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  3. 3.XRE (X-Ray Engineering)ZwijnaardeBelgium
  4. 4.Bathsheba Sculpture LLCSomervilleUSA
  5. 5.NECTEC (National Electronics and Computer Technology Center)BangkokThailand
  6. 6.Hagan StudioPhiladelphiaUSA
  7. 7.ISE Lab 402University of DelawareNewarkUSA

Personalised recommendations