Mathematical modeling of dengue epidemic: control methods and vaccination strategies

  • Sylvestre Aureliano Carvalho
  • Stella Olivia da Silva
  • Iraziet da Cunha CharretEmail author
Original Article


Dengue is, in terms of death and economic cost, one of the most important infectious diseases in the world. So, its mathematical modeling can be a valuable tool to help us to understand the dynamics of the disease and to infer about its spreading by the proposition of control methods. In this paper, control strategies, which aim to eliminate the Aedes aegypti mosquito, as well as proposals for the vaccination campaign are evaluated. In our mathematical model, the mechanical control is accomplished through the environmental support capacity affected by a discrete function that represents the removal of breedings. Chemical control is carried out using insecticide and larvicide. The efficiency of vaccination is studied through the transfer of a fraction of individuals, proportional to the vaccination rate, from the susceptible to the recovered compartments. Our major find is that the dengue fever epidemic is only eradicated with the use of an immunizing vaccine because control measures, directed against its vector, are not enough to halt the disease spreading. Even when the infected mosquitoes are eliminated from the system, the susceptible ones are still present, and infected humans cause dengue fever to reappear in the human population.


Dengue Aedes aegypti Controls Vaccine 



This work was partially supported by the Brazilian agencies CAPES, CNPq and FAPEMIG. We thank Dr. Marcelo Lobato Martins of the Physics Department—Federal University of Viçosa—for the kindness of your priceless suggestions. We also thank the comments and suggestions provided by anonymous referees, which contributed to improving this paper.


  1. Abboubakar H, Kamgang JC, Nkamba LN, Tieudjo D, Emini L (2015) Modeling the dynamics of arboviral diseases with vaccination perspective. Biomath 4:1507241. Google Scholar
  2. Aldila D, Götz T, Soewono E (2013) An optimal control problem arising from a dengue disease transmission model. Math Biosci 242(1):9–16. Google Scholar
  3. Anderson KB, Gibbons RV, Edelman R, Eckels KH, Putnak RJ, Innis BL, Sun W (2011) Interference and facilitation between dengue serotypes in a tetravalent live dengue virus vaccine candidate. J Infect Dis 204(3):442–450Google Scholar
  4. Andersson N, Nava-Aquilera E, Arostequi J, Morales-Perez A, Suazo-Laguna H, Legorreta-Soberanis J, Hernandez-Alvarez C, Fernandez-Salas I, Paredes-Solis S, Balmaseda A, Cortes-Guzman AJ, Serrano de los Santos R, Coloma J, Ledogar RJ, Harris E (2015) Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ 8(351):h3267Google Scholar
  5. Andraud M, Hens N, Marais C, Beutels P (2012) Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS ONE 7(11):E49085Google Scholar
  6. Antonio M, Yoneyama T (2001) Optimal and sub-optimal control in dengue epidemics. Optim Control Appl Methods 22(2):63–73. Google Scholar
  7. Arduino MB (2014) Assessment of Aedes aegypti pupal productivity during the dengue vector control program in a costal urban centre of São Paulo state, Brazil.
  8. Bartley LM, Donnely CA, Garnett GP (2002) The seasonal patterns of dengue in endemic areas: mathematical models of mechanism. Tran R Soc Trop Med Hyg 96:387–397Google Scholar
  9. BarZeev M (1958) The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti. Bull Entomol Res 49:157–163Google Scholar
  10. Beserra EB, Castro FP Jr, Santos JW, Santos TS, Fernandes CRM (2006) Biology and thermal exigency of Aedes aegypti (L.) (Diptera: Culicidae) from four bioclimatic localities of Paraiba. Neotrop Entomol 35(6):853–860Google Scholar
  11. Blayneh KW, Gumel AB, Lenhart S, Clayton T (2010) Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull Math Biol 72(4):1006–1028. Google Scholar
  12. Braga IA, Valle D (2007) Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiologia e Serviços da Saúde 16(4):279–293Google Scholar
  13. Bricks LF (2004) Vacinas para a dengue: perspectivas. Pediatria 26(4):268–281Google Scholar
  14. Burattini MN, Chen M, Coutinho FA, Goh KT, Lopez S, Ma E (2008) Modelling the control strategies against dengue in Singapore. Epidemiol Infect 136(3):309–319Google Scholar
  15. Câmara FPC, Theophilo RLG, Santos GT, Pereira SRFG, Câmara DCP, Matos RRC (2007) Regional and dynamics characteristics of dengue in Brazil: a retrospective study. Rev Soc Bras Med Trop 40(2):192–196Google Scholar
  16. Carvalho A, Roy RV, Andrus J (2016) Vaccine communication and advocacy: challenges and way forward. Exp Rev Vaccines 4(15):539–545. Google Scholar
  17. Chan M, Johansson MA (2012) The incubation periods of dengue viruses. PLoS ONE 7(11):E30972Google Scholar
  18. Christofferson RC, Mores CN (2015) A role for vector control in dengue vaccine programs. Vaccine 33(50):69–74Google Scholar
  19. Cirino S, Silva JAL (2004) Modelo Epidemiológico SEIR de Transmissão da Dengue em Redes de Populações Acopladas. Tend Mat Apl Comput 5(1):55–64Google Scholar
  20. Coutinho FAB, Burattini MN, Lopez LF, Massad E (2006) Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Bull Math Biol 68(8):2263–2282Google Scholar
  21. Cummings DA, Huang NE (2004) Travelling wave in the occurrence of dengue hemorrhagic fever in the Thailand. Nature 4(27):344–347Google Scholar
  22. De Jong MC, Diekmann O, Heesterbeek H (1995) How does transmission of infection depend on population size. Epidemic Models: Their Struct Relat Data 5(2):84–94Google Scholar
  23. Derouich M, Boutayeb A (2006) Dengue fever: mathematical modelling and computer simulation. Appl Math Comput 177(2):528–544Google Scholar
  24. Dias WO, Wanner EF, Cardoso RTN (2015) A multiobjective optimization approach for combating Aedes aegypti using chemical and biological alternated step-size control. Math Biosci 269:37–47Google Scholar
  25. Dumont Y, Chiroleu F (2010) Vector control for the chikungunya disease. Math Biosci Eng 7:313–345Google Scholar
  26. Esteva L, Vargas C (1998) Analysis of a dengue disease transmission model. Math Biosci 150:131–151Google Scholar
  27. Esteva L, Yang HM (2005) Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Math Biosci 198:132–147Google Scholar
  28. Garba SM, Gumel AB, Abu Bakar MR (2008) Backward bifurcations in dengue transmission dynamics. Math Biosci 215(1):11–25. Google Scholar
  29. Getis A, Morrison A, Gray K, Scott TW (2003) Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69(5):494–505Google Scholar
  30. Gotelli NJ (2009) Ecologia, 4th edn. Editora Planta, LondrinaGoogle Scholar
  31. Gubler DJ (1986) Dengue. The arboviruses: epidemiology and ecology, vol II. CeC, Boca Raton, p 213Google Scholar
  32. Gubler DJ (1997) Dengue and dengue hemorrhagic fever: its history and resurgence as a global health problem. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CAB International, New YorkGoogle Scholar
  33. Gubler DJ (2002) The global emergence/resurgence of arboviral disease as public health problems. Arc Med 33(4):330–342Google Scholar
  34. Gubler DJ, Suharyono W, Tan R, Albidini M, Sle (1981) Viremia in patients with naturally acquired dengue infection. Bull World Health Organ 59:623–630Google Scholar
  35. Hadinegoro SR, ArredondoGarcía JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Hj Muhammad Ismail HI, Reynales H, Limkittikul K, RiveraMedina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortés M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373(13):1195–1206. Google Scholar
  36. Hendron RW, Bonsall MB (2016) The interplay of vaccination and vector control on small dengue network. J Theor Biol 407(21):349–361Google Scholar
  37. Horsfall WR (1955) Mosquitoes: their bionomics and relation to disease. Ronald, New YorkGoogle Scholar
  38. IBGE, Instituto Brasileiro de Geografia e Estatstica (2011) Dados sobre População do Brasil, PNAD (Pesquisa Nacional por Amostra de Domicílios),
  39. Johansson MA, Hombach J, Sinha P, Cummings DA (2011) Models of the impact of dengue vaccines: a review of current research and potential approaches. Vaccine 29(35):5860–5868Google Scholar
  40. Johnson AJ, Roehring JT (1999) New mouse model for dengue virus vaccine testing. J Virol 73(1):783–786Google Scholar
  41. Julander JG, Perry ST, Shresta S (2011) Important advances in the field of anti-dengue virus research. Antivir Chem Chemother 21(3):105–116Google Scholar
  42. Kim JE, Lee H, Lee CH, Lee S (2017) Assessment of optimal strategies in a two-patch dengue transmission model with seasonality. PLoS ONE 12(3):e0173673Google Scholar
  43. Knerer G, Currie CSM, Brailsford SC (2015) Impact of combined vector control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis. Health Care Manag Sci 18(2):205–217Google Scholar
  44. Koopman JS, Prevots DR, Vaca MAM, Gomez HD, Zarate MLA, Longini IM Jr, Sepulveda JA (1999) Determinants and predictors of dengue infection in Mexico. Am J Epidemiol 133(11):1168–1178Google Scholar
  45. Koppen W (1948) Climatology con un studio de los climas de la tierra. México: Fondo da Cultura EconómicaGoogle Scholar
  46. Korobeinicov A (2009) Global properties of SIR and SEIR epidemic models with multiple parallel interactions stages. Bull Math Biol 71:75–83Google Scholar
  47. Kurane I, Takasaki T (2001) Dengue fever and dengue hemorrhagic fever: challenges of controlling an enemy still at large. Rev Med Virol 11(5):301–311Google Scholar
  48. Lana RM, Carneiro TGS, Honório NA, Codeço CT (2014) Seasonal and nonseasonal dynamics of Aedes aegypti in Rio de Janeiro, Brazil: fitting mathematical models to trap data. Acta Trop 129:25–32Google Scholar
  49. Luz PM, Codeço CT, Medlock J, Struchiner CJ, Valle D, Galvani AP (2009) Profile of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Epidemiol Infect 137(8):1203–1215Google Scholar
  50. Maidana NA, Yang HM (2007) Describing the geographic spread of dengue disease by traveling waves. Math Biosci 215:64–77Google Scholar
  51. Maidana NA, Yang HM (2009) Spatial spreading of West Nile Virus described by traveling waves? J Theor Biol 258:403–417Google Scholar
  52. MDS (2005) Ministério da Saúde. Guia de Vigilância Epidemiológica. 6nd ed. BrasíliaGoogle Scholar
  53. MDS (2010) Ministério da Saúde. O uso racional de inseticidas no controle do Aedes aegypti e sua utilização oportuna em áreas com transmissão de dengue. Nota Técnica \(\text{N}^{o}\) 109/2010 CGPNCD/DEVEP/SVS/MS BrasíliaGoogle Scholar
  54. Monica Das Gupta M, Engelman R, Levy J, Luchsinger G, Merrick T, Rosen JE (2014) Situação da População Mundial 2014. UNFPA,
  55. Morrison AC, Getis A, Santiago M (1997) Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Med Hyg 57:119–125Google Scholar
  56. Moulay D, Aziz-Alaoui MA, Cadivel M (2011) The chikungunya disease: modeling, vector and transmission global dynamics. Math Biosci 229(1):50–63Google Scholar
  57. Moulay D, Aziz-Alaoui MA, Kwon HD (2012) Optimal control of chikungunya disease: larvae reduction, treatment and prevention. Math Biosci Eng 9(2):369–392. Google Scholar
  58. Nakhapakorn K, Tripathi NK (2005) An information value-based analysis of physical and climatic factors affecting dengue fever and dengue hemorrhagic fever incidence. Int J Health Geogr 4:1–13Google Scholar
  59. Newton EA, Reiter P (1992) A model of the transmission of dengue fever with an evolution of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg 47(6):709–720Google Scholar
  60. Otero M, Solari HG, Schweigmann N (2006) A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Bull Math Biol 68:1945–1974Google Scholar
  61. Parks W, Lloyd L (2004) Planning social mobilization and communication for dengue fever prevention and control. World Health Organization, Geneva, pp 1–158Google Scholar
  62. Pio C, Yang HM, Esteva L (2008) Assessing the suitability of sterile insect technique applied to Aedes aegypti. J Biol Syst 16:565577Google Scholar
  63. Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JL, Fournier M, Trujillo AR, Burton R, Brunkard JM, Anaya-Lopez L, Banicki AA, Morales PK, Smith B, Muñoz JL, Waterman SH (2008) Epidemic dengue and dengue hemorrhagic fever at the Texas–Mexico border: results of a household-based seroepidemiologic survey. Am J Trop Med Hyg 78(3):364–9Google Scholar
  64. Rodrigues HS, Monteiro MT, Torres DF (2014) Vaccination models and optimal control strategies to dengue. Math Biosci 247:1–12Google Scholar
  65. Rodrigues NCP, Lino VTS, Daumas RP, Andrade MKN, O’Dwyer G, Monteiro DLM, Gerardi A, Fernandes GHBV, Ramos JAS, Ferreira CEG, Leite IC (2016) Temporal and spatial evolution of dengue incidence in Brazil, 2001–2012. PLoS ONE 11(11):e0165945Google Scholar
  66. Rueda LM, Patel KJ, Axtell RC, Stinner RE (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (diptera: Culicidae). J Med Entomol 27:892–898Google Scholar
  67. Setzer J (1966) Climate and Ecological Atlas of the State of São Paulo. Comissão Interestadual da Bacia do Paraná-Uruguai em Colaboração com as Centrais Elétricas de SP (CESP), São Paulo, BrazilGoogle Scholar
  68. Silva LJ, Richtmann R (2006) Vaccines under development: group B streptococcus, herpes-zoster, HIV, malaria and dengue. J Pediatr 82(3):115–124Google Scholar
  69. Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Soldan VP, Kochel TJ, Kitron U, Elder JP, Scott TW (2009) The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis 3(7):e481Google Scholar
  70. Teixeira MG, Barreto ML, Costa MC, Ferreira LD, Vasconcelos PF, Cairncross S (2002) Dynamics of dengue virus circulation: a silent epidemic in a complex urban area. Trop Med Int Health 7(9):757–762Google Scholar
  71. Thomé RCA, Yang HM, Esteva L (2010) Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math Biosci 223:12–23Google Scholar
  72. Trips M (1972) Dry season survival of Aedes aegypti eggs in various breeding sites in the Dar Salaam area, Tanzania. Bull WHO 47:433–437Google Scholar
  73. Toro-Zapata HD, Restrepo LD, Vergaño-Salazar JG, Muñs-Loaiz A (2010) Classical dengue transmission dynamics involving mechanical control and prophylaxis. Rev Salud Publica (Bogota) 12(6):1020–1032Google Scholar
  74. Villar L, Dayan GH, Arredondo-García JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramírez JO, Carrasquilla G, Rey LC, Dietze R, Luz K, Rivas E, Montoya MCM, Supelano MC, Zambrano B, Langevin E, Boaz M, Tornieporth N, Saville M, Noriega F (2015) Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med 372:113–23. Google Scholar
  75. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36:143–152Google Scholar
  76. Westaway EG, Brinton MA, Gaidamovich S, Horzinek MC, Igarashi A, Kaariainen L et al (1985) Flaviviridae. Intervirology 24:183–192Google Scholar
  77. WHO (1998) World Health Organization (WHO), Health of older persons in the western pacific region; Country Profiles.$=1$
  78. WHO (2012) World Health Organization (WHO), Global strategy for dengue prevention and control.
  79. WHO (2016) World Health Organization (WHO), Immunization, Vaccines and Biologicals, Geneva.
  80. Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92:1377–1390Google Scholar
  81. Wilson EB, Woecester J (1945) The law of mass action in epidemiology. Proc Natl Acad Sci USA 31:24–34 (part I) and 109–116 (part II)Google Scholar
  82. Yang HM, Ferreira CP (2008) Assessing the effects of the vector control on dengue transmission. Appl Math Comput 198:401–413Google Scholar
  83. Yang HM, Marcoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137:1188–1202Google Scholar
  84. Yang HM, Boldrini JL, Fassoni AC, Freitas LFS, Gomez MC, LIMA KKB, Andrade VR, Freitas ARR (2016) Fitting the Incidence data from the city of Campinas, Brazil, based on dengue transmission modellings considering time-dependent entomological parameters. PLoS ONE 11:e0152186Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de Ciências ExatasUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations