Theory in Biosciences

, Volume 137, Issue 2, pp 117–131 | Cite as

Systems biology of eukaryotic superorganisms and the holobiont concept

  • Ulrich Kutschera
Original Article


The founders of modern biology (Jean Lamarck, Charles Darwin, August Weismann etc.) were organismic life scientists who attempted to understand the morphology and evolution of living beings as a whole (i.e., the phenotype). However, with the emergence of the study of animal and plant physiology in the nineteenth century, this “holistic view” of the living world changed and was ultimately replaced by a reductionistic perspective. Here, I summarize the history of systems biology, i.e., the modern approach to understand living beings as integrative organisms, from genotype to phenotype. It is documented that the physiologists Claude Bernard and Julius Sachs, who studied humans and plants, respectively, were early pioneers of this discipline, which was formally founded 50 years ago. In 1968, two influential monographs, authored by Ludwig von Bertalanffy and Mihajlo D. Mesarović, were published, wherein a “systems theory of biology” was outlined. Definitions of systems biology are presented with reference to metabolic or cell signaling networks, analyzed via genomics, proteomics, and other methods, combined with computer simulations/mathematical modeling. Then, key insights of this discipline with respect to epiphytic microbes (Methylobacterium sp.) and simple bacteria (Mycoplasma sp.) are described. The principles of homeostasis, molecular systems energetics, gnotobiology, and holobionts (i.e., complexities of host–microbiota interactions) are outlined, and the significance of systems biology for evolutionary theories is addressed. Based on the microbe—Homo sapiens—symbiosis, it is concluded that human biology and health should be interpreted in light of a view of the biomedical sciences that is based on the holobiont concept.


Evolution Holobiont Systems biology Reductionism Superorganism 



I thank Dr. Steve Farmer (Chief Science Officer of the Systems Biology Group, Inc., CA, USA) for inviting me to visit his Institution to write this article, and for helpful comments on earlier versions of the manuscript. The cooperation between S. F. and U. K. was supported by the Alexander von Humboldt Foundation, Bonn, Germany (Stanford 2013/2014 to U. K., Institute of Biology, University of Kassel, Germany).


  1. Allan DJ (1952) The philosophy of Aristotle. Oxford University Press, OxfordGoogle Scholar
  2. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and health care. Genome Med 1(2):1–11Google Scholar
  3. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141PubMedPubMedCentralGoogle Scholar
  4. Bernard C (1865) Introduction a L’étude de la Médicine Expérimentale. J. B. Bailliére et Fils, ParisGoogle Scholar
  5. Bertalanffy L (1968) General system theory: foundations, development, applications. George Braziller, New YorkGoogle Scholar
  6. Broeckx T, Hulsmans S, Rolland F (2016) The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J Exp Bot 67:6215–6252PubMedGoogle Scholar
  7. Campbell JE, Berry JA, Seibt U et al (2017) Large historical growth in global terrestrial gross primary production. Nature 544:84–87PubMedGoogle Scholar
  8. Cannon WB (1932) The wisdom of the body. W. W. Norton, New YorkGoogle Scholar
  9. Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, Gordon JI (2016) A microbial perspective of human developmental biology. Nature 535:48–55PubMedPubMedCentralGoogle Scholar
  10. Chiu L, Gilbert SF (2015) The birth of the holobiont: multi-species birthing through mutual scaffolding and niche construction. Biosemiotics 8:191–210Google Scholar
  11. Conti F (2001) Claude Bernard: primer of the second biomedical revolution. Nat Rev Mol Cell Biol 2:703–708PubMedGoogle Scholar
  12. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  13. de Lamarck JB (1815) Histoire naturelle des animaux sans vertèbrates. Tom I. Verdiére, ParisGoogle Scholar
  14. Doerges L, Kutschera U (2014) Assembly and loss of the polar flagellum in plant-associated methylobacteria. Naturwissenschaften 101:339–346PubMedGoogle Scholar
  15. Drack M, Wolkenhauer O (2011) System approaches of Weiss and Bertalanffy and their relevance for systems biology today. Sem Cancer Biol 21:150–155Google Scholar
  16. Dubitzky W, Wolkenhauer O, Yokota H, Cho K-H (eds) (2013) Encyclopedia of systems biology. Springer, BerlinGoogle Scholar
  17. Farmer S (1998) Syncretism in the west: Pico’s 900 theses (1486). The evolution of traditional religious and philosophical systems. Arizona State University Press, TempeGoogle Scholar
  18. Farmer S, Henderson JB, Witzel M (2000) Neurobiology, layered texts, and correlative cosmologies: a cross-cultural framework for premodern history. Bull Mus Far East Antiq 72:48–90Google Scholar
  19. Faure D, Simon J-C, Heulin D (2018) Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host-microbiota interactions in all ecosystems. New Phytol 218:1321–1324PubMedGoogle Scholar
  20. Follmann H, Brownson C (2009) Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 96:1265–1292PubMedGoogle Scholar
  21. Gibson DG, Benders GA, Andrews-Pfannkoch C et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220PubMedGoogle Scholar
  22. Gilbert SF (2014) A holobiont birth narrative: the epigenetic transmission of the human microbiome. Front Genet 5(282):1–7Google Scholar
  23. Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2013) Superorganisms and holobionts. Microbe 8:152–153Google Scholar
  24. Haeckel E (1866) Generelle Morphologie der Organismen. Vol I and II. Verlag Georg Reimer, BerlinGoogle Scholar
  25. Harold FM (1986) The vital force: a study of bioenergetics. W. H. Freeman, New YorkGoogle Scholar
  26. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14Google Scholar
  27. Hegel GWF (1830) Encyclopaedie der philosophischen Wissenschaften im Grundrisse, 3rd edn. August Osswald, HeidelbergGoogle Scholar
  28. Honda K, Littman DR (2016) The microbiota in adaptive immune homeostasis in disease. Nature 353:75–84Google Scholar
  29. Höxtermann E, Hilger HH (eds) (2007) Lebenswissen. Eine Einführung in die Geschichte der Biologie. Natur & Text in Brandenburg, RangsdorfGoogle Scholar
  30. Hutchison CA III, Chuang R-Y, Noskov VN et al (2016) Design and synthesis of a minimal bacterial genome. Science 351:aad6253PubMedGoogle Scholar
  31. Joyner MJ, Pedersen BK (2011) Ten questions about systems biology. J Physiol 589:1017–1030PubMedPubMedCentralGoogle Scholar
  32. Karr JR, Sanghvi JC, Maklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JL, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401PubMedPubMedCentralGoogle Scholar
  33. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedGoogle Scholar
  34. Kleinig H, Sitte P (1986) Zellbiologie. Ein Lehrbuch. 2. Auflage. Verlag Gustav Fischer, JenaGoogle Scholar
  35. Klikno J, Kutschera U (2017) Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria. Protoplasma 254:1867–1877PubMedGoogle Scholar
  36. Klipp E, Liebermeister W, Wierling C, Konald A (2016) Systems biology—a textbook, 2nd edn. Wiley, WeinheimGoogle Scholar
  37. Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Chem Pharmacol Ther 88:25–33Google Scholar
  38. Kolchinsky EI, Kutschera U, Hossfeld U, Levit GS (2017) Russia’s new Lysenkoism. Curr Biol 27:R1042–R1047PubMedGoogle Scholar
  39. Kowarsky M, Camunas-Soler J, Kertesz M et al (2017) Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci USA 114:9623–9628PubMedGoogle Scholar
  40. Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78PubMedPubMedCentralGoogle Scholar
  41. Kutschera U (2008) From Darwinism to evolutionary biology. Science 321:1157–1158PubMedGoogle Scholar
  42. Kutschera U (2011) From the scala naturae to the symbiogenetic and dynamic tree of life. Biol Direct 6(33):1–20Google Scholar
  43. Kutschera U (2015a) Comment: 150 years of an integrative plant physiology. Nat Plants 1(15131):1–3Google Scholar
  44. Kutschera U (2015b) Basic versus applied research: Julius Sachs (1832–1897) and the experimental physiology of plants. Plant Signal Behav 10(9):e1062958PubMedPubMedCentralGoogle Scholar
  45. Kutschera U (2015c) Evolutionsbiologie. Ursprung und stammesentwicklung der Organismen. 4. Auflage. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  46. Kutschera U (2016) Haeckel’s 1866 tree of life and the origin of eukaryotes. Nat Microbiol 1(8):16114PubMedGoogle Scholar
  47. Kutschera U (2017a) Evolution. Reference module in life sciences, Elsevier Inc, Article 06399, pp 1–5Google Scholar
  48. Kutschera U (2017b) Symbiogenesis and cell evolution: an anti-Darwinian research agenda? In: Delisle R (ed) The darwinian tradition in context—research programs in evolutionary biology. Springer, Cham, pp 309–331Google Scholar
  49. Kutschera U, Baluska F (2015) Editorial: Julius Sachs (1832–1897) and the unity of life. Plant Signal Behav 10(9):e1079679PubMedPubMedCentralGoogle Scholar
  50. Kutschera U, Khanna R (2016) Plant gnotobiology: epiphytic microbes and sustainable agriculture. Plant Signal Behav 11(12):e1256529PubMedPubMedCentralGoogle Scholar
  51. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276PubMedGoogle Scholar
  52. Kutschera U, Niklas KJ (2013a) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56PubMedGoogle Scholar
  53. Kutschera U, Niklas KJ (2013b) Metabolic scaling theory in plant biology and the three oxygen paradoxa of aerobic life. Theory Biosci 132:277–288PubMedGoogle Scholar
  54. Kutschera U, Niklas KJ (2018) Julius Sachs 1868: the father of plant physiology. Am J Bot 105:656–666 (in press) PubMedGoogle Scholar
  55. Ladstatter S, Tachibana-Konwalski K (2016) A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell 167:1774–1787PubMedPubMedCentralGoogle Scholar
  56. Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B 282(20151019):1–14Google Scholar
  57. Lemberger T (2007) Systems biology in human health and disease. Mol Syst Biol 3(136):1–2Google Scholar
  58. Lieberman D (2014) The story of the human body. Evolution, health and disease. Penguin Books, LondonGoogle Scholar
  59. Lloyd-Price J, Abu-Ali G, Huttenhover C (2016) The healthy human microbiome. Genome Med 8(51):1–11Google Scholar
  60. Locy WA (1915) Die Biologie und ihre Schöpfer. Gustav Fischer Verlag, JenaGoogle Scholar
  61. Luckey TD (1963) Germ-free life and gnotobiology. Academic Press, New YorkGoogle Scholar
  62. Martin WF (2017) Symbiogenesis, gradualism, and mitochondrial energy in eukaryote evolution. Period Biol 119:141–158Google Scholar
  63. Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB (2017) The physiology of phagocytosis in the context of mitochondrial origin. Microbiol Mol Biol Rev 81:e00008–e00017PubMedPubMedCentralGoogle Scholar
  64. Mayr E (1984) The growth of biological thought. Diversity, evolution, and inheritance. Harvard University Press, CambridgeGoogle Scholar
  65. Mayr E (2004) What makes biology unique? considerations on the autonomy of a scientific discipline. Cambridge University Press, CambridgeGoogle Scholar
  66. Mesarović MD (ed) (1968) Systems theory in biology—view of a theoretician. Springer, BerlinGoogle Scholar
  67. Moulia B, Fournier M (2009) The power and control of gravitropic movements in plants: a biomechanical and systems biology view. J Exp Bot 60:461–486PubMedGoogle Scholar
  68. Niklas KJ (2016) Plant evolution. An introduction to the history of life. The University of Chicago Press, ChicagoGoogle Scholar
  69. Niklas KJ, Kutschera U (2012) Plant development, auxin, and the subsystem incompleteness theorem. Front Plant Sci 3(37):1–11Google Scholar
  70. Niklas KJ, Kutschera U (2014) Amphimixis and the individual in evolving populations: does Weismann’s Doctrine apply to all, most or a few organisms? Naturwissenschaften 101:357–372PubMedGoogle Scholar
  71. Niklas KJ, Kutschera U (2015) Kleiber’s Law: how the Fire of Life ignited debate, fueled theory, and neglected plants as model organisms. Plant Signal Behav 10(7):e1036216PubMedPubMedCentralGoogle Scholar
  72. Noble D (2006) The music of life. Biology beyond the genome. Oxford University Press, OxfordGoogle Scholar
  73. Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93:16–26PubMedGoogle Scholar
  74. Noble D (2010) Biophysics and systems biology. Philos Trans R Soc A 368:1125–1139Google Scholar
  75. Noble D (2013) Physiology is rocking the foundations of evolutionary biology. Exp Physiol 98:1235–1243PubMedGoogle Scholar
  76. Noble D (2017) Evolution viewed from physics, physiology and medicine. Interface Focus 7(20160159):1–21Google Scholar
  77. Noble D, Jablonka E, Joyner MJ, Müller GB, Omholt SW (2014) Evolution evolves: physiology returns to centre stage. J Physiol 592:2237–2244PubMedPubMedCentralGoogle Scholar
  78. Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman AA (2017) ATP as a biological hydrotrope. Science 356:753–756PubMedGoogle Scholar
  79. Penzlin H (2009) The riddle of “life”, a biologist’s critical view. Naturwissenschaften 96:1–23PubMedGoogle Scholar
  80. Pu L, Brady S (2010) Systems biology update: cell type-specific transcriptional regulatory networks. Plant Physiol 152:411–419PubMedPubMedCentralGoogle Scholar
  81. Reif WE, Junker T, Hossfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91Google Scholar
  82. Richardson LA (2017) Evolving as a holobiont. PLoS Biol 15(2):e2002168PubMedPubMedCentralGoogle Scholar
  83. Riedl R (1978) Order in living organisms. A systems analysis of evolution. Wiley, New YorkGoogle Scholar
  84. Rosen R (1968) A means toward a new holism. Science 161:34–35Google Scholar
  85. Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. Verlag Wilhelm Engelmann, LeipzigGoogle Scholar
  86. Saks V, Monge C, Guzun R (2009) Philosophical basis and some historical aspects of systems biology: from Hegel to Noble—applications for bioenergetics research. Int J Mol Sci 10:1161–1192PubMedPubMedCentralGoogle Scholar
  87. Salon C, Avice J-C, Colombie S, Dieuaide-Noubhani M, Gallardo K, Jeudy C, Ourry A, Prudent M, Voisin A-S, Rolin D (2017) Fluxomics links cellular functional analysis to whole-plant phenotyping. J Exp Bot 68:2083–2098PubMedGoogle Scholar
  88. Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29PubMedGoogle Scholar
  89. Schauer S, Kutschera U (2011) A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav 6:510–515PubMedPubMedCentralGoogle Scholar
  90. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM III, Bohr VA (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25:158–170PubMedGoogle Scholar
  91. Schopenhauer A (1851) Parerga und Paralipomena: kleine philosophische Schriften. Band I/II. W. A. Hayn, BerlinGoogle Scholar
  92. Schroedinger E (1944) What is life?. Cambridge University Press, CambridgeGoogle Scholar
  93. Segre JA, Salafsky N (2016) Evolution: hominid superorganisms. Science 353:350–351PubMedGoogle Scholar
  94. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340PubMedGoogle Scholar
  95. Sleator RD (2010) The human superorganism—of microbes and men. Med Hypotheses 74:214–215PubMedGoogle Scholar
  96. Soyer OS (ed) (2017) Evolutionary systems biology. Springer, New YorkGoogle Scholar
  97. Spang A, Caceres EF, Ettema TJG (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357:pii.eaaf3883Google Scholar
  98. Stanier RY, Van Niel CB (1962) The concept of a bacterium. Arch Microbiol 42:17–35Google Scholar
  99. Stearns SC, Koella JC (eds) (2008) Evolution in health and disease. Oxford University Press, OxfordGoogle Scholar
  100. Tully JG, Taylor-Robinson D, Rose DL, Cole RM, Bove JM (1983) Mycoplasma genitalium, a new species from the human urogenital tract. Int J Syst Bacteriol 33:387–396Google Scholar
  101. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237:37–72Google Scholar
  102. Uphoff CC, Drexler HG (2002) Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines. In Vitro Cell Dev Biol Anim 38:79–85PubMedGoogle Scholar
  103. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of microbiome of the plant holobiont. New Phytol 206:1196–1209PubMedGoogle Scholar
  104. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedGoogle Scholar
  105. Vorholt JA (2012) Microbial life in the phylosphere. Nat Rev Microbiol 10:828–840PubMedGoogle Scholar
  106. Wallace AR (1889) Darwinism. An exposition of the theory of natural selection. With some of its applications. Macmillan & Co, LondonGoogle Scholar
  107. Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analysis. Plant Methods 11(14):1–11Google Scholar
  108. Wanjek C (2011) Systems biology as defined by NIH. Natl Inst Health Intramur Res Progr 19(6):1–7Google Scholar
  109. Weismann A (1913) Vorträge über Deszendenztheorie. Bd I, II. 3. Auflage. Gustav Fischer Verlag, JenaGoogle Scholar
  110. West BJ (2010) The wisdom of the body; a contemporary view. Front Physiol 1(1):1–2PubMedPubMedCentralGoogle Scholar
  111. Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD (2012) From systems biology to photosynthesis and whole-plant physiology. Plant Signal Behav 7:260–262PubMedPubMedCentralGoogle Scholar
  112. Wheeler WM (1928) The social insects, their origin and evolution. Harcourt Brace, New YorkGoogle Scholar
  113. Wolkenhauer O, Auffray C, Jaster R, Steinhoff G, Dammann O (2013) The road from systems biology to systems medicine. Pediatr Res 73:502–507PubMedGoogle Scholar
  114. Yin X, Struik PC (2010) Modeling the crop: from systems dynamic to systems biology. J Exp Bot 61:2171–2183PubMedGoogle Scholar
  115. Zimber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Systems Biology Group IncPalo AltoUSA
  2. 2.Institute of BiologyUniversity of KasselKasselGermany

Personalised recommendations