Theory in Biosciences

, Volume 136, Issue 3–4, pp 89–98 | Cite as

The hologenome concept: we need to incorporate function

  • Francesco CataniaEmail author
  • Ulrich Krohs
  • Marco Chittò
  • Diana Ferro
  • Kevin Ferro
  • Gildas Lepennetier
  • Hans-Dieter Görtz
  • Rebecca S. Schreiber
  • Joachim Kurtz
  • Jürgen GadauEmail author
Original Paper


Are we in the midst of a paradigm change in biology and have animals and plants lost their individuality, i.e., are even so-called ‘typical’ organisms no longer organisms in their own right? Is the study of the holobiont—host plus its symbiotic microorganisms—no longer optional, but rather an obligatory path that must be taken for a comprehensive understanding of the ecology and evolution of the individual components that make up a holobiont? Or are associated microbes merely a component of their host’s environment, and the holobiont concept is just a beautiful idea that does not add much or anything to our understanding of evolution? This article explores different aspects of the concept of the holobiont. We focus on the aspect of functional integration, a central holobiont property, which is only rarely considered thoroughly. We conclude that the holobiont comes in degrees, i.e., we regard the property of being a holobiont as a continuous trait that we term holobiontness, and that holobiontness is differentiated in several dimensions. Although the holobiont represents yet another level of selection (different from classical individual or group selection because it acts on a system that is composed of multiple species), it depends on the grade of functional integration whether or not the holobiont concept helps to cast light on the various degrees of interactions between symbiotic partners.


Holobiont Hologenome Symbiosis Evolution Function Functional integration 



Support by the Münster Graduate School of Evolution (MGSE) to DF, KF, and GL is gratefully acknowledged. This work was supported by Santander Universities with a fellowship to JG for his stay (19.05-15.08.2014) in the Evolution Think Tank of the MGSE. This manuscript was conceived during a workshop on Multilevel Selection at the MGSE and owes much to the inspiring discussions with Seth Bordenstein who was one of the invited participants.


  1. Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13(8): e1002226. doi: 10.1371/journal.pbio.1002226
  2. Breeuwer JAJ, Werren JH (1995) Hybrid breakdown between 2 haplodiploid species—the role of nuclear and cytoplasmic genes. Evolution 49:705–717. doi: 10.2307/2410324 CrossRefPubMedGoogle Scholar
  3. Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667–669. doi: 10.1126/science.1240659 CrossRefPubMedGoogle Scholar
  4. Cerqueda-Garcia D, Martinez-Castilla LP, Falcon LI, Delaye L (2014) Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in ‘Chlorochromatium aggregatum’. ISME J 8:991–998. doi: 10.1038/ismej.2013.207 CrossRefPubMedGoogle Scholar
  5. Chun CK et al (2008) Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc Natl Acad Sci USA 105:11323–11328. doi: 10.1073/pnas.0802369105 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83–129CrossRefPubMedGoogle Scholar
  7. Cummins R (1975) Functional-Analysis. J Philos 72:741–765. doi: 10.2307/2024640 CrossRefGoogle Scholar
  8. DePriest PT (2004) Early molecular investigations of lichen-forming symbionts: 1986–2001*. Annu Rev Microbiol 58:273–301. doi: 10.1146/annurev.micro.58.030603.123730 CrossRefPubMedGoogle Scholar
  9. Finegold SM, Sutter VL, Mathisen GE (1983) Human intestinal microflora in health and disease. Academic Press, New YorkGoogle Scholar
  10. Frostl JM, Overmann J (1998) Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135CrossRefPubMedGoogle Scholar
  11. Gadau J, Page RE, Werren JH (1999) Mapping of hybrid incompatibility loci in Nasonia. Genetics 153:1731–1741PubMedPubMedCentralGoogle Scholar
  12. Gibson JD, Niehuis O, Peirson BRE, Cash EI, Gadau J (2013) Genetic and developmental basis of F-2 hybrid breakdown in Nasonia Parasitoid Wasps. Evolution 67:2124–2132. doi: 10.1111/evo.12080 CrossRefPubMedGoogle Scholar
  13. Gilbert SF, Bosch TC, Ledon-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16:611–622. doi: 10.1038/nrg3982 CrossRefPubMedGoogle Scholar
  14. Godfrey-Smith P (2009) Darwinian Populations and Natural Selection. Oxford University Press, New YorkCrossRefGoogle Scholar
  15. Grice EA, Segre JA (2011) The skin microbiome Nat Rev Microbiol 9:244–253. doi: 10.1038/nrmicro2537 CrossRefPubMedGoogle Scholar
  16. Griesemer JR (2014) Reproduction and the scaffolded development of hybrids. In: Caporael LRGJR, Wimsatt WC (eds) Developing scaffolding in evolution, cognition and culture. MIT Press, Cambridge, pp 23–55Google Scholar
  17. Guerrero R, Margulis L, Berlanga M (2013) Symbiogenesis: the holobiont as a unit of evolution. Int Microbiol 16:133–144. doi: 10.2436/20.1501.01.188 PubMedGoogle Scholar
  18. Heath KD, Tiffin P (2007) Context dependence in the coevolution of plant and rhizobial mutualists. Proc R Soc B 274:1905–1912. doi: 10.1098/rspb.2007.0495 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Herren JK, Paredes JC, Schupfer F, Arafah K, Bulet P, Lemaitre B (2014) Insect endosymbiont proliferation is limited by lipid availability. eLife 3:e02964. doi: 10.7554/eLife.02964 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hölldobler B, Wilson EO (2009) The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. Norton, New YorkGoogle Scholar
  21. Hull DL (1980) Individuality and Selection Annu Rev Ecol Syst 11:311–332. doi: 10.1146/ CrossRefGoogle Scholar
  22. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633. doi: 10.1038/nrmicro1705 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Karakashian SJ, Karakashian MW, Rudzinska MA (1968) Electron microscopie observations on the symbiosis of Paramecium bursaria and its intracellular algae J Protozool 15:113–128. doi: 10.1111/j.1550-7408.1968.tb02095.x CrossRefGoogle Scholar
  24. Kremer N et al (2013) Initial Symbiont Contact Orchestrates Host-Organ-wide Transcriptional Changes that Prime Tissue Colonization. Cell Host Microbe 14:183–194. doi: 10.1016/j.chom.2013.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Krohs U (2009) Functions as based on a concept of general design. Synthese 166:69–89. doi: 10.1007/s11229-007-9258-6 CrossRefGoogle Scholar
  26. Krohs U (2011) Functions and fixed types: Biological and other functions in the post-adaptationist era Appl Ontol 6:125–139. doi: 10.3233/Ao-2011-0089 Google Scholar
  27. Lamarcq LH, McFall-Ngai MJ (1998) Induction of a gradual, reversible morphogenesis of its host’s epithelial brush border by Vibrio fischeri. Infect Immun 66:777–785PubMedPubMedCentralGoogle Scholar
  28. von Bertalanffy L (1968) General system theory: foundations, development, applications. George Braziller, New YorkGoogle Scholar
  29. Leggat W et al. (2007) The hologenome theory disregards the coral holobiont Nat Rev Microbiol 5. doi: 10.1038/nrmicro1635-c1
  30. Liebig J, Poethke HJ (2004) Queen lifespan and colony longevity in the ant Harpegnathos saltator. Ecol Entomol 29:203–207. doi: 10.1111/J.1365-2311.2004.00583.X CrossRefGoogle Scholar
  31. Liu Z et al (2013) Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”. Genome Biol 14:R127. doi: 10.1186/gb-2013-14-11-r127 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  33. Margulis L (2003) Symbiosis in cell evolution. W. H. Freeman & Co., New YorkGoogle Scholar
  34. McFall-Ngai M (2014a) Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol 12:e1001783. doi: 10.1371/journal.pbio.1001783 CrossRefPubMedPubMedCentralGoogle Scholar
  35. McFall-Ngai MJ (2014b) The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol 68:177–194. doi: 10.1146/annurev-micro-091313-103654 CrossRefPubMedGoogle Scholar
  36. McFall-Ngai M et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236. doi: 10.1073/pnas.1218525110 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Millikan RG (1984) Language, Thought, and Other Biological Categories: New Foundations for Realism Bradford/MIT Press. Mass, CambridgeGoogle Scholar
  38. Mindell DP (1992) Phylogenetic consequences of symbioses: Eukarya and Eubacteria are not monophyletic taxa. Biosystems 27:53–62CrossRefPubMedGoogle Scholar
  39. Minelli A (2016) Scaffolded biology Theory in Biosciences 135:163–173CrossRefPubMedGoogle Scholar
  40. Montgomery MK, McFall-Ngai M (1994) Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes Development 120:1719–1729PubMedGoogle Scholar
  41. Moran NA, Baumann P (2000) Bacterial endosymbionts in animals Curr Opin Microbiol 3:270–275. doi: 10.1016/S1369-5274(00)00088-6 CrossRefPubMedGoogle Scholar
  42. Moran NA, Sloan DB (2015) The Hologenome Concept: helpful or Hollow? PLoS Biol 13:e1002311. doi: 10.1371/journal.pbio.1002311 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mossio M, Saborido C, Moreno A (2009) An Organizational Account of Biological Functions Brit J Philos Sci 60:813–841. doi: 10.1093/bjps/axp036 Google Scholar
  44. Nash TH (2008) Lichen Biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  45. Neander K (1991) Functions as Selected Effects - the Conceptual Analysts Defense. Philos Sci 58:168–184. doi: 10.1086/289610 CrossRefGoogle Scholar
  46. Niehuis O, Judson AK, Gadau J (2008) Cytonuclear genic incompatibilities cause increased mortality in male F-2 hybrids of Nasonia giraulti and N. vitripennis. Genetics 178:413–426. doi: 10.1534/genetics.107.080523 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci USA 97:10231–10235. doi: 10.1073/Pnas.97.18.10231 CrossRefPubMedPubMedCentralGoogle Scholar
  48. O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ott T et al (2009) Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of lotus japonicus root nodules. Mol Plant Microbe Interact 22:800–808. doi: 10.1094/MPMI-22-7-0800 CrossRefPubMedGoogle Scholar
  50. Peeters C (1997) In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, New YorkGoogle Scholar
  51. Peter IS, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340:188–199. doi: 10.1016/j.ydbio.2009.10.037 CrossRefPubMedGoogle Scholar
  52. Reeve HK, Holldobler B (2007) The emergence of a superorganism through intergroup competition. Proc Natl Acad Sci USA 104:9736–9740. doi: 10.1073/pnas.0703466104 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rosenberg E, Zilber-Rosenberg I (2013) The hologenome concept: human, animal and plant microbiota. Springer, New YorkCrossRefGoogle Scholar
  54. Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci R Soc 250:91–98. doi: 10.1098/rspb.1992.0135 CrossRefGoogle Scholar
  55. Saborido C, Mossio M, Moreno A (2011) Biological organization and cross-generation functions. Brit J Philos Sci 62:583–606. doi: 10.1093/bjps/axq034 CrossRefGoogle Scholar
  56. Stouthamer R, Breeuwert JA, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361:66–68. doi: 10.1038/361066a0 CrossRefPubMedGoogle Scholar
  57. Theis KR et al (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1(2):e00028-16. doi: 10.1128/mSystems.00028-16
  58. van Ham RCHJ et al (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586. doi: 10.1073/pnas.0235981100 CrossRefPubMedPubMedCentralGoogle Scholar
  59. van Oppen MJH (2004) Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 144:1–7. doi: 10.1007/s00227-003-1187-4 CrossRefGoogle Scholar
  60. van Opstal EJ, Bordenstein SR (2015) MICROBIOME. Rethinking heritability of the microbiome. Science 349:1172–1173. doi: 10.1126/science.aab3958 CrossRefPubMedGoogle Scholar
  61. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi: 10.1146/annurev.genet.39.110304.095751 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. doi: 10.1111/j.1574-6976.2008.00123.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Francesco Catania
    • 1
    • 2
    Email author
  • Ulrich Krohs
    • 2
    • 3
  • Marco Chittò
    • 2
    • 4
  • Diana Ferro
    • 1
    • 2
  • Kevin Ferro
    • 1
    • 2
  • Gildas Lepennetier
    • 1
    • 2
  • Hans-Dieter Görtz
    • 2
    • 5
  • Rebecca S. Schreiber
    • 2
  • Joachim Kurtz
    • 1
    • 2
  • Jürgen Gadau
    • 1
    • 2
    • 6
    Email author
  1. 1.Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
  2. 2.Münster Graduate School of EvolutionUniversity of MünsterMünsterGermany
  3. 3.Department of Philosophy and Center for Philosophy of ScienceUniversity of MünsterMünsterGermany
  4. 4.Institute of Hygiene University of MünsterMünsterGermany
  5. 5.Department of Zoology, Biological InstituteUniversity of StuttgartStuttgartGermany
  6. 6.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations