Advertisement

Theory in Biosciences

, Volume 135, Issue 4, pp 187–200 | Cite as

On discrete evolutionary dynamics driven by quadratic interactions

  • N. GrosjeanEmail author
  • T. Huillet
  • G. Rollet
Original Paper

Abstract

After an introduction to the general topic of models for a given locus of a diploid population whose quadratic dynamics is determined by a fitness landscape, we consider more specifically the models that can be treated using genetic (or train) algebras. In this setup, any quadratic offspring interaction can produce any type of offspring and after the use of specific changes of basis, we study the evolution and possible stability of some examples. We also consider some examples that cannot be treated using the framework of genetic algebras. Among these are bistochastic matrices.

Keywords

Evolutionary dynamics Quadratic interactions Genetic algebras Polymorphism Bistochastic interaction 

Notes

Acknowledgments

T. Huillet acknowledges support from the Project Basal PFB 03 of the CONICYT of Chile, from the “Chaire Modélisation mathématique et biodiversité” and together with N. Grosjean, from the labex MME-DII Center of Excellence (Modèles mathématiques et économiques de la dynamique, de l’incertitude et des interactions, ANR-11-LABX-0023-01 project).

References

  1. Abraham VM (1980) Linearizing quadratic transformations in genetic algebras. Proc Lond Math Soc 40:346–363CrossRefGoogle Scholar
  2. Abraham VM (1980) The genetic algebra of polyploids. Proc Lond Math Soc 3(40):385–429CrossRefGoogle Scholar
  3. Andrade R, Catalan A, Labra A (1994) The identity \(\left( x^{2}\right) ^{2}=\varpi \left( x\right) x^{3}\) in baric algebras. In: Gonzalez S (Ed.) Non-associative algebra and its applications. Math. and its Applic., Springer Science+Business Media, B.VGoogle Scholar
  4. Al’pin YA, Koreshkov NA (2000) On the simultaneous triangulability of matrices. Math Notes 68(5)Google Scholar
  5. Bürger, R (2000) The mathematical theory of selection, recombination, and mutation. Wiley Series in mathematical and computational biology. Wiley, Chichester, pp xii+409Google Scholar
  6. Etherington IMH (1939) Genetic algebras. Proc R Soc Edinb 59:242–258CrossRefGoogle Scholar
  7. Etherington IMH (1941) Quart J Math (Oxford) 12:1–8CrossRefGoogle Scholar
  8. Etherington IMH (1941) Non-associative algebra and the symbolism of genetics. Proc R Soc Edinb B 61:24–42Google Scholar
  9. Ewens WJ (2004) Mathematical population genetics. I. Theoretical introduction. Second edition. Interdisciplinary applied mathematics, vol 27. Springer, New YorkGoogle Scholar
  10. Fran F, Irawati I (2015) The condition for a genetic algebra to be a special train algebra. J Multidiscip Eng Sci Technol 2(6):1496–1500Google Scholar
  11. Ganikhodzhaev R, Mukhamedov F, Rozikov U (2011) Quadratic stochastic operators and processes: results and open problems. Infin Dimens Anal Quantum Probab Relat Top 14(2):279–335CrossRefGoogle Scholar
  12. Gonshor H (1960) Special train algebras arising in genetics. Proc Edinb Math Soc 2(12):41–53CrossRefGoogle Scholar
  13. Gonshor H (1965) Special train algebras arising in genetics, II. Proc Edinb Math Soc 2(14):333–338CrossRefGoogle Scholar
  14. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Holgate P (1965) Genetic algebras associated with polyploidy. Proc Edinb Math Soc 15:1–9CrossRefGoogle Scholar
  16. Holgate P (1981) Population algebras. J R Stat Soc B 43(1):1–19Google Scholar
  17. Holgate P (1989) Some infinite-dimensional genetics algebras. Algèbres génétiques (Montpellier, 1985), 35–45, Cahiers Math Montpellier, 38, Univ. Sci. Tech. Languedoc, MontpellierGoogle Scholar
  18. Karlin S (1984) Mathematical models, problems, and controversies of evolutionary theory. Bull Am Math Soc (N.S.) 10(2):221–274CrossRefGoogle Scholar
  19. Kesten H (1970) Quadratic transformations: a model for population growth. I (and II). Adv Appl Probab, Vol. 2, No. 1 (resp. 2), 1–82, (resp. 179–228)Google Scholar
  20. Kesten H (1971) Some nonlinear stochastic growth models. Bull Am Math Soc 77(4)Google Scholar
  21. Kingman JFC. Mathematics of genetic diversity. CBMS-NSF Regional Conference Series in Applied Mathematics, 34. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1980, pp vii+70. ISBN: 0-89871-166-5Google Scholar
  22. Kingman JFC (1961) A matrix inequality. Quart J Math Oxford Ser 12:78–80CrossRefGoogle Scholar
  23. Lyubich YI (1992) Mathematical structures in population genetics. Vol 22 of Biomathematics, Springer, BerlinGoogle Scholar
  24. McCoy NH (1934) On quasi-commutative matrices. Trans Am Math Soc 36(2):327–340CrossRefGoogle Scholar
  25. McCoy NH (1936) On the characteristic roots of matric polynomials. Bull Am Math Soc 42(8):592–600CrossRefGoogle Scholar
  26. Reed ML (1997) Algebraic structure of genetic inheritance. (New Ser) Am Math Soc 34(2):107–130CrossRefGoogle Scholar
  27. Weissing FJ, van Boven M (2001) Selection and segregation distortion in a sex-differentiated population. Theor Popul Biol 60(4):327–341CrossRefPubMedGoogle Scholar
  28. Wörz-Busekros A (1980) Algebras in genetics, vol 36., Lecture Notes in Biomathematics, Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  29. Wörz-Busekros A (1981) Relationship between genetic algebras and semicommutative matrices. Linear Algebra Appl 39:111–123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique et ModélisationCNRS-UMR 8089 et Université de Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations