Theory in Biosciences

, Volume 135, Issue 3, pp 111–119 | Cite as

Diploid male dynamics under different numbers of sexual alleles and male dispersal abilities

  • Luiz R. R. Faria
  • Elaine Della Giustina Soares
  • Eduardo do Carmo
  • Paulo Murilo Castro de Oliveira
Original Paper

Abstract

Insects in the order Hymenoptera (bees, wasps and ants) present an haplodiploid system of sexual determination in which fertilized eggs become females and unfertilized eggs males. Under single locus complementary sex-determination (sl-CSD) system, the sex of a specimen depends on the alleles at a single locus: when diploid, an individual will be a female if heterozygous and male if homozygous. Significant diploid male (DM) production may drive a population to an extinction scenario called “diploid male vortex”. We aimed at studying the dynamics of populations of a sl-CSD organism under several combinations of two parameters: male flight abilities and number of sexual alleles. In these simulations, we evaluated the frequency of DM and a genetic diversity measure over 10,000 generations. The number of sexual alleles varied from 10 to 100 and, at each generation, a male offspring might fly to another random site within a varying radius R. Two main results emerge from our simulations: (i) the number of DM depends more on male flight radius than on the number of alleles; (ii) in large geographic regions, the effect of males flight radius on the allelic diversity turns out much less pronounced than in small regions. In other words, small regions where inbreeding normally appears recover genetic diversity due to large flight radii. These results may be particularly relevant when considering the population dynamics of species with increasingly limited dispersal ability (e.g., forest-dependent species of euglossine bees in fragmented landscapes)

Keywords

Diploid male vortex Haplodiploidy Inbreeding  Hymenoptera Population dynamics Sl-CSD 

Notes

Acknowledgments

We are grateful to Suzana Moss de Oliveira for a critical reading of the manuscript

References

  1. Aguiar WM, Sofia SH, Melo GAR, Gaglianone MC (2015) Changes in orchid bee communities across forest-agroecosystem boundaries in Brazilian Atlantic Forest landscapes. Environ Entomol 44:1465–1471. doi: 10.1093/ee/nvv130 CrossRefPubMedGoogle Scholar
  2. Antolin MF, Strand MR (1992) Mating system of Bracon hebetor (Hymenoptera, Braconidae). Ecol Entomol 17:1–7CrossRefGoogle Scholar
  3. Auerbach F (1913) Das Gesetz der Bevlkerungskonzentration. Petermanns Geogr Mitt 59:73–76Google Scholar
  4. Beye M, Hasselmann M, Fondrk MK, Page RE Jr, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429CrossRefPubMedGoogle Scholar
  5. Butcher RDJ, Whitfield WGF, Hubbard SF (2000) Complementary sex determination in the genus Diadegma (Hymenoptera: Ichneumonidae). J Evolution Biol 13:593–606CrossRefGoogle Scholar
  6. Conwan DP, Stahlhut JK (2004) Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination. PNAS 101:10374–10379CrossRefGoogle Scholar
  7. Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–436CrossRefGoogle Scholar
  8. Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286CrossRefPubMedGoogle Scholar
  9. Darrouzet E, Gévar JM, Guignard Q, Aron S (2015) Production of early diploid males by European colonies of the invasive hornet Vespa velutina nigrithorax. PLOS One 10:e0136680CrossRefPubMedPubMedCentralGoogle Scholar
  10. de Oliveira PMC, de Oliveira SM (2010) Física em Computadores, Livraria da Física Editora, São Paulo (in Portuguese, but with routines presented in C computer language)Google Scholar
  11. Dick CW, Roubik DW, Gruber KF, Bermingham E (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Mol Ecol 13:3775–3785CrossRefPubMedGoogle Scholar
  12. Duchateau MJ, Hoshiba H, Velthuis HHW (1994) Diploid males in the bumble bee Bombus terrestris: sex determination, sex alleles and viability. Entomol Exp Appl 71:263–269. doi: 10.1111/j.1570-7458.1994.tb01793.x CrossRefGoogle Scholar
  13. Dudley R (1995) Extraordinary flight performance of orchid bees (Apidae: Euglossini) hovering in heliox (80 % He // 20 % O\(_2\)). J Exp Biol 198:1065–1070PubMedGoogle Scholar
  14. Elias J, Mazzi D, Dorn S (2009) No need to discriminate? Reproductive diploid males in a parasitoid with complementary sex determination. PLoS One 4:e6024CrossRefPubMedPubMedCentralGoogle Scholar
  15. Estoup JB (1912) Gammes sténographiques. In: Recueil de textes choisis pour l’acquisition méthodique de la vitesse, précédé d’une introduction par, 3e édition. Institut Stenographique, Paris, pp 140Google Scholar
  16. Giangarelli DC, Freiria GA, Ferreira DG, Aguiar WM, Penha RES, Alves AN, Gaglianone MC, Sofia SH (2015) Orchid bees: a new assessment on the rarity of diploid males in populations of this group of Neotropical pollinators. Apidologie 46:606–617CrossRefGoogle Scholar
  17. Gu HN, Dorn S (2003) Mating system and sex allocation in the gregarious parasitoid Cotesia glomerata. Anim Behav 66:259–64CrossRefGoogle Scholar
  18. Harpur BA, Sobhani M, Zayed A (2012) A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomol Exp Appl 146:156–164. doi: 10.1111/j.1570-7458.2012.01306.x CrossRefGoogle Scholar
  19. Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Ann Rev Entomol 53:209–230CrossRefGoogle Scholar
  20. Hein S, Poethke HJ, Dorn S (2009) What stops the ’diploid male vortex’? A simulation study for species with single locus complementary sex determination. Ecol Model 220:1663–1669CrossRefGoogle Scholar
  21. Kukuk PF, May B (1990) Diploid males in a primitively eusocial bee, Lasioglossum ( Dialictus) zephyrum (Hymenoptera: Halictidae). Evolution 44:1552–1558CrossRefGoogle Scholar
  22. López-Uribe MM, Almanza MT, Ordoñez M (2007) Diploid male frequencies in Colombian populations of euglossine bees. Biotropica 39:660–662CrossRefGoogle Scholar
  23. López-Uribe MM, Morreale SJ, Santiago CK, Danforth BN (2015) Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape. PLoS One 10:e0125719. doi: 10.1371/journal.pone.0125719 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ma W-J, Kuijper B, de Boer JG, van de Zande L, Beukeboom LW, Wertheim B, Pannebakker BA (2013) Absence of complementary sex determination in the parasitoid wasp genus Asobara (Hymenoptera: Braconidae). PLoS One 8:e60459. doi: 10.1371/journal.pone.0060459 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Metzger M, Bernstein C, Hoffmeister TS, Desouhant E (2010) Does kin recognition and sib-mating avoidance limit the risk of genetic incompatibility in a parasitic wasp? PLoS One 5:e13505CrossRefPubMedPubMedCentralGoogle Scholar
  26. Milet-Pinheiro P, Schlindwein C (2005) Do euglossine males (Apidae, Euglossini) leave tropical rainforest to collect fragrances in sugarcane monocultures? Rev Bras Zool 22:853–858CrossRefGoogle Scholar
  27. Morato EF, Martins RP (2006) An overview of proximate factors affecting the nesting behavior of solitary wasps and bees (Hymenoptera: Aculeata) in preexisting cavities in wood. Neotrop Entomol 35:285–298CrossRefPubMedGoogle Scholar
  28. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466:1057–1062CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ode PJ, Antolin MF, Strand MR (1995) Brood-mate avoidance in the parasitic wasp Bracon hebetor Say. Anim Behav 49:1239–1248CrossRefGoogle Scholar
  30. Owen RE, Packer L (1994) Estimation of the proportion of diploid males in populations of Hymenoptera. Heredity 72:219–227CrossRefGoogle Scholar
  31. Petruszewycz M (1973) L’histoire de la loi d’Estoup-Zipf: documents. Math Sci Hum 44:41–56Google Scholar
  32. Rosa JF, Ramalho M, Monteiro D, Silva MD (2015) Permeability of matrices of agricultural crops to Euglossina bees (Hymenoptera, Apidae) in the Atlantic Rain Forest. Apidologie 46:691–702CrossRefGoogle Scholar
  33. Ross KG, Vargo EL, Keller L, Trager JC (1993) Effect of founder event on variation in the genetic sex-determining system of the fire ant Solenopsis invicta. Genetics 135:843–854PubMedPubMedCentralGoogle Scholar
  34. Roubik DW, Weight LA, Bonilla MA (1996) Population genetics, diploid males, and limits to social evolution of euglossine bees. Evolution 50:931–935CrossRefGoogle Scholar
  35. Ruf D, Dorn S, Mazzi D (2011) Females leave home for sex: natal dispersal in a parasitoid with complementary sex determination. Anim Behav 81:1083–1089CrossRefGoogle Scholar
  36. Sá Martins JS, de Oliveira PMC (2004) Computer simulations of statistical models and dynamic complex systems. Braz J Phys 34:1077CrossRefGoogle Scholar
  37. Stouthamer R, Luck RF, Werren JH (1992) Genetics of sex determination and the improvemen of biological control using parasitoids. Environ Entomol 21:427–435CrossRefGoogle Scholar
  38. Takahashi NC, Peruquetti RC, Del Lama MA, Campos LAO (2001) A reanalysis of diploid male frequencies in euglossine bees (Hymenoptera: Apidae). Evolution 55:1897–1899CrossRefPubMedGoogle Scholar
  39. Tonhasca A, Albuquerque GS, Blackmer JL (2002) Dispersal of euglossine bees between fragments of the Brazilian Atlantic Forest. J Trop Ecol 19:99–102CrossRefGoogle Scholar
  40. van Wilgenburg E, Driessen G, Beukeboom LW (2006) Single locus complementary sex determination in Hymenoptera: an ’unintelligent’ design? Front Zool 3:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  41. Whiting PW (1943) Multiple alleles complementary sex determination of Habrobracon. Genetics 28:365–382PubMedPubMedCentralGoogle Scholar
  42. Wikelski M, Moxley J, Eaton-Mordas A, Lpez-Uribe MM, Holland R, Moskowitz D, Roubik DW, Kays R (2010) Large-range movements of Neotropical orchid bees observed via radio telemetry. PLoS One 5:e10738CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wu Z, Hopper KR, Ode PJ, Fuester RW, Tuda M, Heimpel GE (2005) Single-locus complementary sex determination absent in Heterospilus prosopidis (Hymenoptera: Braconidae). Heredity 95:228–234CrossRefPubMedGoogle Scholar
  44. Yokoyama S, Nei M (1979) Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics 91:609–626PubMedPubMedCentralGoogle Scholar
  45. Zayed A, Constantin SA, Packer L (2007) Successful biological invasion despite a severe genetic load. PLoS One 2:e868CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zayed A, Packer L (2001) High levels of diploid male production in a primitively eusocial bee (Hymenoptera: Halictidae). Heredity 87:631–636CrossRefPubMedGoogle Scholar
  47. Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. PLOS One 102:10742–10746Google Scholar
  48. Zayed A, Roubik DW, Packer L (2004) Use of diploid male frequency data as an indicator of pollinator decline. Proc R Soc Lond B Biol Sci 271:S9–S12CrossRefGoogle Scholar
  49. Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Luiz R. R. Faria
    • 1
  • Elaine Della Giustina Soares
    • 1
  • Eduardo do Carmo
    • 1
  • Paulo Murilo Castro de Oliveira
    • 2
    • 3
  1. 1.Instituto Latino-Americano de Ciências da Vida e da NaturezaUniversidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil
  2. 2.Instituto Mercosul de Estudos AvançadosUniversidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil
  3. 3.Instituto de FísicaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations