Theory in Biosciences

, Volume 134, Issue 3–4, pp 93–104 | Cite as

Leeches of the genus Helobdella as model organisms for Evo-Devo studies

Original Paper


Model organisms are important tools in modern biology and have been used elucidate mechanism underlying processes, such as development, heredity, neuronal signaling, and phototropism, to name but a few. In this context, the use of model organisms is predicated on uncovering evolutionarily conserved features of biological processes in the expectation that the findings will be applicable to organisms that are either inaccessible or intractable for direct experimentation. For the most part, particular species have been adapted as model organisms because they can be easily reared and manipulated in the laboratory. In contrast, a major goal in the field of evolutionary developmental biology (Evo-Devo) is to identify and elucidate the differences in developmental processes among species associated with the dramatic range of body plans among organisms, and how these differences have emerged over time in various branches of phylogeny. At first glance then, it would appear that the concept of model organisms for Evo-Devo is oxymoronic. In fact, however, laboratory-compatible, experimentally tractable species are of great use for Evo-Devo, subject to the condition that the ensemble of models investigated should reflect the range of taxonomic diversity, and for this purpose glossiphoniid leeches are useful. Four decades ago (1975), leeches of the species-rich genus Helobdella (Lophotrochozoa; Annelida; Clitellata; Hirudinida; Glossiphoniidae) were collected in Stow Lake, Golden Gate Park, San Francisco, CA (USA). These and other Helobdella species may be taken as Evo-Devo models of leeches, clitellate annelids, and the super-phylum Lophotrochozoa. Here we depict/discuss the biology/taxonomy of these Evo-Devo systems, and the challenges of identifying species within Helobdella. In addition, we document that H. austinensis has been established as a new model organism that can easily be cultivated in the laboratory. Finally, we provide an updated scheme illustrating the unique germ line/soma-differentiation during early development and speculate on the mechanisms of sympatric speciation in this group of aquatic annelids.


Evo-Devo Helobdella Leeches Model organisms Germ line 



The observations and experiments described here were carried out when U. K. was a visiting scientist in the Weisblat lab at UC Berkeley (California, USA). This project is supported by the Alexander von Humboldt-Foundation, Bonn, Germany (AvH-Fellowships Stanford/Berkeley 2009–2014 to U.K., Institute of Biology, University of Kassel, Germany), and by the AiF (KF 3057203AJA).


  1. Akam M (1998) The Yin and Yang of Evo/Devo. Cell 92:153–155CrossRefPubMedGoogle Scholar
  2. Ankeny RA, Leonelli S (2011) What’s so special about model organisms? Stud Hist Philos Sci A 42:313–323CrossRefGoogle Scholar
  3. Bely AE, Weisblat DA (2006) Lessons from leeches: a call for DNA barcoding in the lab. Evol Dev 8:491–501CrossRefPubMedGoogle Scholar
  4. Blanchard E (1849) Annelides. In: Gay, D. C. (ed.) Historia Fisica y Politica de Chile, Zoologia, Paris 3:43–50Google Scholar
  5. Blanchard R (1896) Viaggio del dott. A. Borelli nella Republica Argentina e nel Paraguay XXI. Hirudinees. Bolletino Museum Zoologia et Anatomia comparativa Torino 11:1–24Google Scholar
  6. Bolker JA (1995) Model systems in developmental biology. BioEssays 17:451–455CrossRefPubMedGoogle Scholar
  7. Bolker JA (2014) Model species in evo-devo: a philosophical perspective. Evol Dev 16:49–56CrossRefPubMedGoogle Scholar
  8. Borda E, Siddall ME (2004a) Arhynchobdellida (Annelida: Oligocheta: Hirudinida): phylogenetic relationships and evolution. Mol Phylogenet Evol 30:213–255CrossRefPubMedGoogle Scholar
  9. Borda E, Siddall ME (2004b) Review of the evolution of life history strategies and phylogeny of the Hirudinida (Annelida: Oligochaeta). Lauterbornia 52:5–25Google Scholar
  10. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedCentralPubMedGoogle Scholar
  11. Castle WE (1900) Some North American fresh-water Rhynchobdellidae, and their parasites. Bull Museum Comp Zool Harvard Coll 36:18–64Google Scholar
  12. Cho SJ, Vallès Y, Weisblat DA (2014) Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech Helobdella. Mol Biol Evol 31:341–354 [A correction to this article was published in Mol Biol Evol 32:833–834.] PubMedCentralCrossRefPubMedGoogle Scholar
  13. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  14. Darwin C (1881) The power of movement in plants. John Murray, LondonGoogle Scholar
  15. Elliott JM, Kutschera U (2011) Medicinal leeches: historical use, ecology, genetics and conservation. Freshwater Reviews 4:21–41CrossRefGoogle Scholar
  16. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884CrossRefPubMedGoogle Scholar
  17. Hall BK (1999) Evolutionary developmental biology, 2nd edn. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  18. Hossfeld U (1996) Ruderfusskrebse (Copepoden)– ein Versuchsobjekt der klassischen Vererbungszytologie zu Beginn des 20. Jahrhunderts. Biol Zentralbl 115:91–103Google Scholar
  19. Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat Rev Genet 8:311–319CrossRefPubMedGoogle Scholar
  20. Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70:396–417CrossRefPubMedGoogle Scholar
  21. Klemm DJ, Moser WE, Wetzel MJ (2012) Classification and Checklist of the Leeches (Phylum Annelida: Class Clitellata: Subclass Hirudinida) occurring in North America north of Mexico. (Accessed Nov 21 2012)
  22. Kolb EM, Rezende EL, Holness L, Radtke A, Lee SK, Obenaus A, Garland T (2013) Mice selectively bread for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. J Exp Biol 216:515–523CrossRefPubMedGoogle Scholar
  23. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921CrossRefPubMedGoogle Scholar
  24. Kuo D-H, Shankland M (2004) Evolutionary diversification of specification mechanisms within the O/P equivalence group of the leech genus Helobdella. Development 131:5859–5869CrossRefPubMedGoogle Scholar
  25. Kutschera U (1987) Notes on the taxonomy and biology of leeches of the genus Helobdella Blanchard 1896 (Hirudinea: Glossiphoniidae). Zool Anz 219:321–323Google Scholar
  26. Kutschera U (1988) A new leech species from North America, Helobdella californica nov. sp. (Hirudinea: Glossiphoniidae). Zool Anz 220:173–178Google Scholar
  27. Kutschera U (1989) Reproductive behaviour and parental care of the leech Helobdella californica (Hirudinea: Glossiphoniidae). Zool Anz 222:122–128Google Scholar
  28. Kutschera U (1992) Reproductive behaviour and parental care of the leech Helobdella triserialis (Hirudinea: Glossiphoniidae). Zool Anz 228:74–81Google Scholar
  29. Kutschera U (2004) The freshwater leech Helobdella europaea (Hirudinea: Glossiphoniidae): an invasive species from South America? Lauterbornia 52:153–162Google Scholar
  30. Kutschera U (2009) Charles Darwin’s Origin of Species, directional selection, and the evolutionary sciences today. Naturwissenschaften 96:1247–1263CrossRefPubMedGoogle Scholar
  31. Kutschera U (2011) The Golden Gate Leech Helobdella californica (Hirudinea: Glossiphoniidae): occurrence and DNA-based taxonomy of a species restricted to San Francisco. Internat Rev Hydrobiol 96:286–295CrossRefGoogle Scholar
  32. Kutschera U (2013) Evolution. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, vol 2. Elsevier, New York, pp 541–544CrossRefGoogle Scholar
  33. Kutschera U, Briggs WR (2009) From Charles Darwin’s botanical country-house studies to modern plant biology. Plant Biol 11:785–795CrossRefPubMedGoogle Scholar
  34. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276PubMedGoogle Scholar
  35. Kutschera U, Niklas KJ (2009) Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften 96:1339–1354CrossRefPubMedGoogle Scholar
  36. Kutschera U, Wang Z-Y (2015) Growth-Limiting Proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma. doi: 10.1007/s00709-015-0787-4
  37. Kutschera U, Wirtz P (1986) A leech that feeds its young. Anim Behav 34:941–942CrossRefGoogle Scholar
  38. Kutschera U, Wirtz P (2001) The evolution of parental care in freshwater leeches. Theory Biosci 120:115–137CrossRefGoogle Scholar
  39. Kutschera U, Langguth H, Kuo D-H, Weisblat DA, Shankland M (2013) Description of a new leech species from North America, Helobdella austinensis n. sp. (Hirudinea: Glossiphoniidae), with observations on its feeding behaviour. Zoosyst Evol 89:239–246CrossRefGoogle Scholar
  40. Lai Y-T, Chang C-H, Chen J-H (2009) Two new species of Helobdella Blanchard 1896 (Hirudinea: Rhynchobdellida: Glossiphoniidae) from Taiwan, with a checklist of hirudinea fauna of the island. Zootaxa 2068:27–46Google Scholar
  41. Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio Decima. Holmiae, Laurentii SalviiGoogle Scholar
  42. Love AC (2009) Marine invertebrates, model organisms, and the modern synthesis: epistemic values, evo-devo, and exclusion. Theroy Biosci 128:19–42CrossRefGoogle Scholar
  43. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  44. Mayr E (1982) The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, CambridgeGoogle Scholar
  45. Minelli A, Baedke J (2014) Model organisms in evo-devo: promises and pitfalls of the comparative approach. Hist Philos Life Sci 36:42–59CrossRefPubMedGoogle Scholar
  46. Morgan TH (1916) A critique of the theory of evolution. Princeton University Press, PrincetonCrossRefGoogle Scholar
  47. Mueller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949CrossRefGoogle Scholar
  48. Niklas KJ, Kutschera U (2009) The evolutionary development of plant body plans. Funct Plant Biol 36:682–695CrossRefGoogle Scholar
  49. Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41CrossRefPubMedGoogle Scholar
  50. Niklas KJ, Kutschera U (2014) Amphimixis and the individual in evolving populations: does Weismann’s Doctrine apply to all, most or a few organisms? Naturwissenschaften 101:357–372CrossRefPubMedGoogle Scholar
  51. Niklas KJ, Kutschera U (2015) Historical revisionism and the inheritance theories of Darwin and Weismann. Sci Nat 102(27):1–3Google Scholar
  52. Oceguera-Figueroa A, Leon-Regagnon V, Siddall ME (2010) DNA barcoding reveals Mexican diversity within the freshwater leech genus Helobdella (Annelida: Glossiphoniidae). Mitochondrial DNA 21:24–29CrossRefPubMedGoogle Scholar
  53. Olsson L, Hossfeld U, Levit G (2010) Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 97:951–969CrossRefPubMedGoogle Scholar
  54. Rader K (2004) Making mice: standardizing animals for American biomedical research 1900–1955. Princeton University Press, PrincetonGoogle Scholar
  55. Reif W-E, Junker T, Hossfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91CrossRefGoogle Scholar
  56. Reiss C, Olsson L, Hossfeld U (2015) The history of the oldest self-sustaining laboratory animal: 150 years of Axolotl research. J Exp Zool (Mol Dev Evol) 324:393–404CrossRefGoogle Scholar
  57. Salas-Montiel R, Phillips AJ, Perez-Ponce de Leon G, Oceguera-Figueroa A (2014) Description of a new leech species of Helobdella (Clitellata: Glossiphoniidae) from Mexico with a review of Mexican congeners and a taxonomic key. Zootaxa 3900:077–094CrossRefGoogle Scholar
  58. Sawyer RT (1972) North American freshwater leeches, exclusive of the Piscicolidae, with a key to all species. Illinois Biological Monographs 46. University of Illinois Press, UrbanaCrossRefGoogle Scholar
  59. Sawyer RT (1986) Leech biology and behaviour. Oxford University Press, OxfordGoogle Scholar
  60. Sayers CW, Coleman J, Shain DH (2009) Cell dynamics during cocoon secretion in the aquatic leech, Theromyzon tessulatum (Annelida: Clitellata: Glossiphoniidae). Tissue Cell 41:35–42CrossRefPubMedGoogle Scholar
  61. Schmerer MW, Null RW, Shankland M (2013) Developmental transition to bilaterally symmetric cell divisions is regulated by Pax-mediated transcription in embryos of the leech Helobdella austinensis. Dev Biol 382:149–159CrossRefPubMedGoogle Scholar
  62. Seaver EC, Shankland M (2000) Leech segmental repeats develop normally in the absence of signals from either anterior or posterior segments. Dev Biol 224:339–353CrossRefPubMedGoogle Scholar
  63. Shankland M, Bissen ST, Weisblat DA (1992) Description of the Californian leech Helobdella robusta sp. nov., and comparison with Helobdella triserialis on the basis of morphology, embryology, and experimental breeding. Can J Zool 70:1258–1263CrossRefGoogle Scholar
  64. Siddall ME, Borda E (2003) Phylogeny and revision of the leech genus Helobdella (Glossiphoniidae) based on mitochondrial gene sequences and morphological data and a special consideration of the triserialis complex. Zool Scripta 32:23–33CrossRefGoogle Scholar
  65. Siddall ME, Budinoff RB (2005) DNA-barcoding evidence for widespread introduction of a leech from the South American Helobdella triserialis complex. Conserv Genet 6:467–472CrossRefGoogle Scholar
  66. Siddall ME, Budinoff RB, Borda E (2005) Phylogenetic evaluation of systematics and biogeography of the leech family Glossiphoniidae. Invertebr Systematics 19:105–112CrossRefGoogle Scholar
  67. Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo DH, Larsson T, Lv J, Arendt D, Savage R, Osoegawa K, de Jong P, Grimwood J, Chapman JA, Shapiro H, Aerts A, Otillar RP, Terry AY, Boore JL, Grigoriev IV, Lindberg DR, Seaver EC, Weisblat DA, Putnam NH, Rokhsar DS (2013) Insights into bilaterian evolution from three spiralian genomes. Nature 493:526–531PubMedCentralCrossRefPubMedGoogle Scholar
  68. Sket B, Trontelj P (2008) Global diversity of leeches (Hirudinea) in freshwater. Hydrobiologia 595:129–137CrossRefGoogle Scholar
  69. Wedeen CJ, Price DJ, Weisblat DA (1990) Analysis of the life cycle, genome and homeo box genes of the leech Helobdella triserialis. In: Karr TL (ed) The cellular and molecular biology of pattern formation (Stocum, DL. Oxford University Press, Oxford, pp 145–167Google Scholar
  70. Weisblat DA, Kuo D-H (2009) Helobdella (Leech): A model for developmental studies. Emerging model organisms - a laboratory manual, vol 1. CSHL Press, Cold Spring Habor, pp 245–267Google Scholar
  71. Weisblat DA, Kuo D-H (2014) Developmental biology of the leech Helobdella. Int J Dev Biol 58:429–443PubMedCentralCrossRefPubMedGoogle Scholar
  72. Weisblat DA, Sawyer RT, Stent GS (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202:1295–1298CrossRefPubMedGoogle Scholar
  73. Weisblat DA, Harper G, Stent GS, Sawyer RT (1980) Embryonic cell lineages in the nervous systems of the glossiphoniid leech Helobdella triserialis. Dev Biol 76:58–78CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations