Advertisement

Theory in Biosciences

, Volume 134, Issue 3–4, pp 143–147 | Cite as

The relativity of biological function

  • Manfred D. Laubichler
  • Peter F. StadlerEmail author
  • Sonja J. Prohaska
  • Katja Nowick
Short Communication

Abstract

Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of “functional DNA” in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

Keywords

Biological function ENCODE Biological theory  Coarse graining Theory integration 

Notes

Acknowledgments

We thank Jan Aerts and Steve Hoffmann for critical reading of the manuscript.

References

  1. Bornberg-Bauer E, Huylmans AK, Sikosek T (2010) How do new proteins arise? Cur Opp Struct Biol 20:1–7CrossRefGoogle Scholar
  2. Bradley RK, Li XY, Trapnell C, Davidson S, Pachter L, Chu HC, Tonkin LA, Biggin MD, Eisen MB (2010) Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol 8(e1000):343Google Scholar
  3. Craver C (2007) Explaining the brain: mechanisms and the mosaic unity of neuroscience. Oxford University Press, New YorkCrossRefGoogle Scholar
  4. Cummins R (1975) Functional analysis. J Philos 72:741–765CrossRefGoogle Scholar
  5. Doolittle WF (2013) Is junk DNA bunk? a critique of ENCODE. Proc Natl Acad Sci USA 110:5294–5300PubMedCentralCrossRefPubMedGoogle Scholar
  6. Dupré J (1993) The disorder of things: metaphysical foundations of the disunity of science. Harvard University Press, Cambridge, MAGoogle Scholar
  7. Eddy SR (2013) The ENCODE project: Missteps overshadowing a success. Current Biol 23:R259–R261CrossRefGoogle Scholar
  8. Feyerabend P, Oberheim E (2011) Tyranny of science. Polity Press, Cambridge, UK, Malden, MAGoogle Scholar
  9. Galison P, Stump DJ (1996) The Disunity of science: boundaries, contexts, and power. Stanford University Press, Stanford, CAGoogle Scholar
  10. Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (2007) What is a gene, post-ENCODE? history and updated definition. Genome Res 17:669–681CrossRefPubMedGoogle Scholar
  11. Gingeras TR (2007) Origin of phenotypes: Genes and transcripts. Genome Res 17:682–690CrossRefPubMedGoogle Scholar
  12. Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E (2013) On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5:578–590PubMedCentralCrossRefPubMedGoogle Scholar
  13. Graur D, Zheng Y, Azevedo RB (2015) An evolutionary classification of genomic function. Genome Biol Evol 7:642–645CrossRefPubMedGoogle Scholar
  14. Griffiths PE (1993) Functional analysis and proper functions. Br J Philos Sci 44:409–422CrossRefGoogle Scholar
  15. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF. The Students of Bioinformatics Computer Labs 2004 and 2005 (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:15Google Scholar
  16. Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21:447–450CrossRefPubMedGoogle Scholar
  17. Houle D, Pelabon C, Wagner G, Hansen T (2011) Measurement and meaning in biology. Q Rev Biol 86:3–34CrossRefPubMedGoogle Scholar
  18. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, Ward LD, Birney E, Crawford G, Dekker J, Dunham I, Elnitski LL, Farnham PJ, Feingold EA, Gerstein M, Giddings MC, Gilbert DM, Gingeras TR, Green ED, Guigó R, Hubbard T, Kent J, Lieb JD, Myers RM, Pazin MJ, Ren B, Stamatoyannopoulos JA, Weng Z, White KP, Hardison RC (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA 111:6131–6138PubMedCentralCrossRefPubMedGoogle Scholar
  19. Krakauer DC, Collins JP, Erwin D, Flack JC, Fontana W, Laubichler MD, Prohaska SJ, West GB, Stadler PF (2011) The challenges and scope of theoretical biology. J Theor Biol 276:269–276CrossRefPubMedGoogle Scholar
  20. Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472CrossRefPubMedGoogle Scholar
  21. Levy A (2010) Pattern, process and the evolution of meaning: species and units of selection. Biosci 129:159–166Google Scholar
  22. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23:34–45PubMedCentralCrossRefPubMedGoogle Scholar
  23. Millikan RG (1989) In defense of proper functions. Philos Sci 56:288–302CrossRefGoogle Scholar
  24. Nathanson JA, Hunnicuttt EJ, Kantham L, Scavone C (1993) Cocaine as a naturally occurring insecticide. Proc Natl Acad Sci USA 90:9645–9648PubMedCentralCrossRefPubMedGoogle Scholar
  25. Neander K (1991) Functions as selected effects: the conceptual analyst’s defense. Philos Sci 58:168–184CrossRefGoogle Scholar
  26. Neme R, Tautz D (2013) Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14:117PubMedCentralCrossRefPubMedGoogle Scholar
  27. Otto W, Stadler PF, López-Gialdéz F, Townsend JP, Lynch VJ, Wagner GP (2009) Measuring transcription factor binding site turnover: A maximum likelihood approach using phylogenies. Genome Biol Evol 1:85–98PubMedCentralCrossRefPubMedGoogle Scholar
  28. Ponting CP, Hardison RC (2011) What fraction of the human genome is functional? Genome Res 21:1769–1776PubMedCentralCrossRefPubMedGoogle Scholar
  29. Prohaska SJ, Stadler PF (2008) Genes. Biosci 127:215–221Google Scholar
  30. Rands CM, Meader S, Ponting CP, Lunter G (2014) 8.2 % of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet 10(e1004):525Google Scholar
  31. Rosenberg A (1994) Instrumental biology, or the disunity of science. University of Chicago Press, ChicagoGoogle Scholar
  32. Smith MA, Gesell T, Stadler PF, Mattick JS (2013) Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res 41:8220–8236PubMedCentralCrossRefPubMedGoogle Scholar
  33. Tautz D, Domazet-Lošo T (2011) The evolutionary origin of orphan genes. Nat Rev Genet 12:692–702CrossRefPubMedGoogle Scholar
  34. The ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306:636–640CrossRefGoogle Scholar
  35. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74PubMedCentralCrossRefGoogle Scholar
  36. Wheeler QD, Meier R (2000) Species concepts and phylogenetic theory: a debate. Columbia University Press, New YorkGoogle Scholar
  37. Wilson RA (1999) Species: new interdisciplinary essays. MIT Press, CambridgeGoogle Scholar
  38. Wouters AG (2003) Four notions of biological function. Stud Hist Philos Sci Part C Stud Hist Philos BiolBiomed Sci 34:633–668CrossRefGoogle Scholar
  39. Wright L (1973) Functions. Philosophical Rev 82:139–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Manfred D. Laubichler
    • 1
    • 2
    • 3
  • Peter F. Stadler
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    Email author
  • Sonja J. Prohaska
    • 10
  • Katja Nowick
    • 11
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Marine Biological LaboratoryWoods HoleUSA
  3. 3.Santa Fe InstituteSanta FeUSA
  4. 4.Bioinformatics Group at the Department of Computer Science, Interdisciplinary Center of Bioinformatics, LIFE - Leipzig Research Center for Civilization Diseases, and German Center for Integrative Biodiversity ResearchUniversity LeipzigLeipzigGermany
  5. 5.Max-Planck Institute for Mathematics in the SciencesLeipzigGermany
  6. 6.Fraunhofer Institut für Zelltherapie und Immunologie – IZILeipzigGermany
  7. 7.Department of Theoretical ChemistryUniversity of ViennaWienAustria
  8. 8.Center for non-coding RNA in Technology and HealthUniversity of CopenhagenFrederiksberg CDenmark
  9. 9.Santa Fe InstituteSanta FeUSA
  10. 10.Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center of BioinformaticsUniversity LeipzigLeipzigGermany
  11. 11.TFome Research Group at Department of Computer Science, Paul-Flechsig-Institute for Brain Research, and Interdisciplinary Center of BioinformaticsUniversity LeipzigLeipzigGermany

Personalised recommendations