Advertisement

Theory in Biosciences

, Volume 132, Issue 3, pp 139–158 | Cite as

Randomness and multilevel interactions in biology

  • Marcello Buiatti
  • Giuseppe Longo
Review

Abstract

The dynamic instability of living systems and the “superposition” of different forms of randomness are viewed, in this paper, as components of the contingently changing, or even increasing, organization of life through ontogenesis or evolution. To this purpose, we first survey how classical and quantum physics define randomness differently. We then discuss why this requires, in our view, an enriched understanding of the effects of their concurrent presence in biological systems’ dynamics. Biological randomness is then presented not only as an essential component of the heterogeneous determination and intrinsic unpredictability proper to life phenomena, due to the nesting of, and interaction between many levels of organization, but also as a key component of its structural stability. We will note as well that increasing organization, while increasing “order”, induces growing disorder, not only by energy dispersal effects, but also by increasing variability and differentiation. Finally, we discuss the cooperation between diverse components in biological networks; this cooperation implies the presence of constraints due to the particular nature of bio-entanglement and bio-resonance, two notions to be reviewed and defined in the paper.

Keywords

Classical/quantum randomness Biological randomness Critical transitions Random complexification Entropy production Network constraints Bio-resonance 

Notes

Acknowledgments

We would like to thank warmly the anonymous referee for his/her close analysis and constructive critique of our paper.

References

  1. Arjun R, van Oudenaarden R (2008) Stochastic gene expression and its consequences. Cell 135(2):216–226CrossRefGoogle Scholar
  2. Arndt M, Juffmann TH, Vedral V (2009) Quantum physics meets biology. HFSP J 3(6):386–400PubMedCrossRefGoogle Scholar
  3. Aspect A, Grangier P, Roger G (1982) Experimental realization of the Einstein–Podolsky–Rosen–Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys Rev Lett 49:91CrossRefGoogle Scholar
  4. Bailly F, Longo G (2007) Randomness and determination in the interplay between the continuum and the discrete. Math Struct Comput Sci 17(2):289–307CrossRefGoogle Scholar
  5. Bailly F, Longo G (2008) Extended critical situations. J Biol Syst 16(2):309–336CrossRefGoogle Scholar
  6. Bailly F, Longo G (2009) Biological organization and anti-entropy. J Biol Syst 17(1):63–96CrossRefGoogle Scholar
  7. Bailly F, Longo G (2011) Mathematics and the natural sciences. Imperial College Press, The Physical Singularity of LifeGoogle Scholar
  8. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374PubMedCrossRefGoogle Scholar
  9. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell functional organization. Nat Rev Genet 5(2):101–111PubMedCrossRefGoogle Scholar
  10. Bateson G (1979) Mind and nature: a necessary unity. Bantam Books, New YorkGoogle Scholar
  11. Bell JS (1964) On the Einstein–Podolsky–Rosen paradox. Physics 1:195–200Google Scholar
  12. Binney J, Dowrick NJ, Fisher AJ, Newman MEJ (1992) The theory of critical phenomena: an introduction to the renormalization group. Oxford University Press, New YorkGoogle Scholar
  13. Buiatti M (2011) Plants: individuals or epigenetic cell populations? In: the future of Lamarckism, MIT Press, Cambridge (in press)Google Scholar
  14. Buiatti M, Buiatti M (2008) Chance vs. necessity in living systems, a false antinomy. Biol Forum 101:29–66Google Scholar
  15. Cai J, Guerreschi GG, Briegel HJ (2010) Quantum control and entanglement in a chemical compass. Phys Rev Lett 104:220502. doi: 10.1103/PhysRevLett.104.220502 PubMedCrossRefGoogle Scholar
  16. Čepl JJ, Patkova I, Blahůškov A, Cvrčkov F, Markoš A (2010) Patterning of mutually interacting bacterial bodies: close contacts and airborne signals. BMC Microbiol 10:139PubMedCrossRefGoogle Scholar
  17. Ceron-Carrasco JP, Requena A, Perpete EA, Michaux C, Jacquemin D (2009) Double proton transfer mechanism in the adenine–uracil base pair and spontaneous mutation in RNA duplex. Chem Phys Lett 484:64–68CrossRefGoogle Scholar
  18. Cha Y, Murray CJ, Klinman JP (1989) Hydrogen tunneling in enzyme reactions. Science 243:1325–1329Google Scholar
  19. Collini E, Wong CY, Wilk KE, Curmi PMG, Brurner P, Scholes GD (2010) Coherently wired light harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–648PubMedCrossRefGoogle Scholar
  20. Crespi BJ (2001) The evolution of social behaviour in microorganisms. Trends Ecol Evol 16:178–183PubMedCrossRefGoogle Scholar
  21. Crick FHC (1958) On Protein Synthesis. Symp Soc Exp Biol, 139–163Google Scholar
  22. Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563PubMedCrossRefGoogle Scholar
  23. Dao ND, Kessin E, Ennis HL (2000) Developmental cheating and the evolutionary biology of Dictyostelium and Myxococcus. Microbiology 146:1505–1512PubMedGoogle Scholar
  24. Darwin CH (1875) The variation of animals and plants under domestication, 2nd edn. John Murray, LondonGoogle Scholar
  25. de Vries H (1902) Die Mutationstheorie. Veit, LipsiaGoogle Scholar
  26. Del Giudice E, Doglia S, Milani M, Vitiello G (1986) Electromagnetic field and spontaneous symmetry breaking in biological matter. Nucl Phys B 275:185–199CrossRefGoogle Scholar
  27. Del Giudice E, Preparata G (1998) A new QED picture of water: understanding a few fascinating phenomena. In: Sassaroli et al. (eds), Macroscopic quantum coherence. World Scientific, London, UK, pp 108–129Google Scholar
  28. Del Giudice E, Vitiello G (2006) Role of the electromagnetic field in the formation of domains in the process of symmetry-breaking phase transitions. Phys Rev A 74:022105CrossRefGoogle Scholar
  29. Devaney RL (1989) An introduction to chaotic dynamical systems, Addison-WesleyGoogle Scholar
  30. Dietrich MG (2000) From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution, and genetics. Amer Zool 40:738–747CrossRefGoogle Scholar
  31. Douhal A, Kim SAH, Zewall AH (1995) Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 378:260–263PubMedCrossRefGoogle Scholar
  32. Edelman J (1987) Neural Darwinism: the theory of neuronal group selection. Basic Books, New YorkGoogle Scholar
  33. Eigen M, Schuster P (1979) The hypercycle. A principle of natural self-organization. Springer, BerlinGoogle Scholar
  34. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 41:777CrossRefGoogle Scholar
  35. Eldredge N (2008) Hierarchies and the sloshing bucket: toward the unification of evolutionary biology. Outreach 1:10–15CrossRefGoogle Scholar
  36. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf JM (ed), Models in paleo-biology. WH Freeman, San Francisco 72: 82–115Google Scholar
  37. Engel GS, Calhoun TR, Read EL, Ahn T, Mançal T, Cheng Y-C, Blankenship RE (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782-786Google Scholar
  38. Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 447:782–786CrossRefGoogle Scholar
  39. Flowers I, Si IL, Stathos A, Saxer G, Ostrowski EA, Strassman DCJE, Purugganan MD (2010) Variation, sex, and social cooperation: molecular population Genetics of the social amoeba Dictyostelium discoideum. PLoS Genetics 6(7):1–14CrossRefGoogle Scholar
  40. Fox Keller E (2005) Revisiting “scale free” networks. BioEssays 27:1060–1068CrossRefGoogle Scholar
  41. Gaspard P (2007) Time asymmetry in non equilibrium statistical mechanics. Adv Chem Phys 135:83–133CrossRefGoogle Scholar
  42. Gerhart J, Kirschner M (1999) Cells, embryos and evolution. Blackwell Science, MaldenGoogle Scholar
  43. Goldschmidt R (1940) The material basis of evolution. Yale University Press, New HavenGoogle Scholar
  44. Gould SJ (1998) Full house. Harmony Books, New YorkGoogle Scholar
  45. Gray H, Winkler J (2003) Electron tunneling through proteins. Q Rev Biophys 36:341–372PubMedCrossRefGoogle Scholar
  46. Huxley J (1943) Evolution, the modern synthesis. Harper and Brothers Publishers, New York and LondonGoogle Scholar
  47. Jaeger G (2009) Entanglement, information, and the interpretation of quantum mechanics. Springer, HeildelbergCrossRefGoogle Scholar
  48. Jean RV (1994) Phyllotaxis : a systemic study in plant morphogenesis. Cambridge University Press, LondonCrossRefGoogle Scholar
  49. Jeong HB, Tombor R, Albert ZN, Ottvai AL, Barabasi J (2000) The large scale organization of metabolic networks. Nature 407:651PubMedCrossRefGoogle Scholar
  50. Karafyllidis IG (2008) Quantum mechanical model for information transfer from DNA to protein. Biosystems 93:191–198PubMedCrossRefGoogle Scholar
  51. Kucharski R, Maleszka R, Foret S, Maleszka A (2008) Nutritional control of reproductive status in Honeybees via DNA methylation. Science 319:1827–1830PubMedCrossRefGoogle Scholar
  52. Kupiec JJ (1997) A Darwinian theory for the origin of cellular differentiation. Mol Gen Genet 255:201–208PubMedCrossRefGoogle Scholar
  53. Laskar J (1990) The chaotic behaviour of the solar system. Icarus 88:266–291CrossRefGoogle Scholar
  54. Laskar J (1994) Large scale chaos in the solar system. Astron Astrophys 287:9–12Google Scholar
  55. Lemke J (2000) Opening up closure. Semiotics across scales. Ann NY Acad Sci 901:100–111PubMedCrossRefGoogle Scholar
  56. Lerner I.M., 1950, Population genetics and animal improvement, Cambridge University PressGoogle Scholar
  57. Longo G (2013) Interfaces de l’incomplétude, Les Mathématiques, Editions du CNRS, downloadable (Italian original: Le Matematiche vol. 4, Einaudi, 2010; ongoing translation in English)Google Scholar
  58. Longo G, Palamidessi C, Paul T (2010) Some bridging results and challenges in classical, quantum and computational randomness. In: Zenil H (ed) Randomness through computation. World Science, SingaporeGoogle Scholar
  59. Longo G, Montévil M (2011) From physics to biology by extending criticality and symmetry breakings. Prog Biophys Mol Biol 106(2):340–347PubMedCrossRefGoogle Scholar
  60. Longo G, Montévil M (2012) Randomness increases order in biological evolution. Invited paper, conference on “Computations, Physics and Beyond”. 21–24 Feb 2012; LNCS vol. 7318 (Dinneen et al. eds). Springer, Auckland, pp 289–308Google Scholar
  61. Longo G, Montévil M, Kauffman S (2012) No entailing laws, but enablement in the evolution of the biosphere.In: Invited Paper, ACM Proceedings of the genetic and evolutionary computation conference, GECCO’12, Philadelphia, 7–11 July 2012Google Scholar
  62. Luisi PL (2006) The emergence of life: from chemical origin to synthetic biology. Cambridge University Press, LondonCrossRefGoogle Scholar
  63. Lush JL (1945) Animal breeding plans. Iowa D State College Press, AmesGoogle Scholar
  64. Mather K (1949) Biometrical genetics. Methuen and Co, LondonGoogle Scholar
  65. Maffini MV, Calabro JM, Soto AM, Sonnenschein C (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 167:1405–1410PubMedCrossRefGoogle Scholar
  66. Mehdiabadi NJ, Kronforst MR, Queller DC, Strassmann J (2008) Phylogeny, reproductive isolation and kin recognition in the social amoeba Dictyostelium Purpureum. Evolution 63(2):542–548CrossRefGoogle Scholar
  67. Michael JC (1992) Bacterial differentiation within Maraxella bovis colonies growing at the interface of the agar medium with the petri dish. J Gen Microbiol 138:2687–2695CrossRefGoogle Scholar
  68. Minsky A, Shimoni E, Frenkiel-Krispin D (2002) Stress, order and survival. Nat Rev Mol Cell Biol 3:50–60PubMedCrossRefGoogle Scholar
  69. Moeller AP, Swaddle JP (1997) Asymmetry, developmental stability and evolution Oxford series in ecology and evolution. Oxford University Press, NYGoogle Scholar
  70. Monod J (1970) L’hasard et la nécessité. Seuil, ParisGoogle Scholar
  71. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, CambridgeGoogle Scholar
  72. Nilsson-Ehle (1909) Kreuzunguntersuchungen an Hafer und Weizen. Academic Dissertation, Lund, p 122Google Scholar
  73. Noble D (2010) Biophysics and systems biology. Phil Trans R Soc Math Phys Eng Sci 368(1914):1125–1139CrossRefGoogle Scholar
  74. Noguera M, Bertran J, Sodupe M (2004) A quantum chemical study of Cu2 + iteracting with guanine cytosine base pair. Electrostatic and oxidative effects on intermolecular proton-transfer processes. J Phys Chem 108:333–341CrossRefGoogle Scholar
  75. Perez A, Tuckerman ME, Hjalmarson HP, von Lilienfeld OA (2010) Enol tautomers of Watson–Crick base pair models are metastable because of nuclear quantum effects. J Am Chem Soc 132:11510–11515PubMedCrossRefGoogle Scholar
  76. Ostrowski EA, Katoh M, Shaulsky G, Queller DC, Strassmann JE (2008) Kin discrimination increases with genetic distance in a social amoeba. PLoS Biol 6:2377–2382CrossRefGoogle Scholar
  77. Poincaré H (1892) Les méthodes nouvelles de la mécanique celeste, ParisGoogle Scholar
  78. Queller JE, Strassmann MD, Purugganan MD (2010) Variation, sex, and social cooperation: molecular population genetics of the social amoeba Dictyostelium discoideum. PLoS Genetics 6:1–14Google Scholar
  79. Reece StY, Nogera DG (2009) Proto-coupled electron transfer in Biology: results from synergistic studies in natural and model systems. Annu Rev Biochem 78:673–699PubMedCrossRefGoogle Scholar
  80. Ricard J (2008) Pourquoi le tout est plus que la somme de ses parties. Hermann, ParisGoogle Scholar
  81. Rieger T, Neubauer Z, Blahůško A, Cvrčkov F, Markoš A (2008) Bacterial body plans: colony ontogeny in Serratia marcescens. Commun Integr Biol 1:78–87PubMedCrossRefGoogle Scholar
  82. Salthe S (1985) Evolving hierarchical systems. Columbia University Press, New YorkGoogle Scholar
  83. Sarovar M, Ishizaki A, Fleming GR, Whaley KB (2010) Quantum entanglement in photosynthetic light-harvesting complexes. Nature-Phys 6:462–467CrossRefGoogle Scholar
  84. Schrödinger E (1944) What is life? The physical aspect of the living cell. Cambridge University Press, LondonGoogle Scholar
  85. Sonnenschein C, Soto AM (1999) The society of cells: cancer and control of cell proliferation. Springer, BerlinGoogle Scholar
  86. Sorsa M (1980) Somatic mutation theory. J Toxicol Environ Health 6:5–6Google Scholar
  87. Soto AM, Sonnenschein C, Miquel PA (2008) On physicalism and downward causation in developmental and cancer biology. Acta Biotheor 56:257–274PubMedCrossRefGoogle Scholar
  88. Soto AM, Sonnenschein C (2010) Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol 6(7):363–370PubMedCrossRefGoogle Scholar
  89. Strassmann JE, Zhu Y, Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408:465–466CrossRefGoogle Scholar
  90. Theißen G (2010) Saltational evolution: hopeful monsters are here to stay. Theory Biosci 128:43–51CrossRefGoogle Scholar
  91. Van Driessche N, Shaw C, Katoh M, Morio T, Sucgang R, Ibarra M, Kuwayama H, Saito T, Urushihara H, Maeda M, Takeuchi I, Ochiai H, Eaton W, Tollett J, Halter J, Kuspa A, Tanaka Y, Shaulsky G (2002) A transcriptional profile of multicellular development in Dictyostelium discoideum. Development 129:1543–1552PubMedGoogle Scholar
  92. Waddington CH (1975) The evolution of an evolutionist. Cornell University Press, IthacaGoogle Scholar
  93. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribonucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  94. West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607PubMedCrossRefGoogle Scholar
  95. Winkler J, Gray H, Prytkova T, Kurnikov I, Beratan D (2005) Electron transfer through proteins. Bioelectronics, pp 15–33, Wiley-VCH,Weinheim, GermanyGoogle Scholar
  96. Wimpenny JWT, Parr JA (1979) Biochemical differentiation in large colonies of Enterobacter cloacae. J Gen Microbiol 114:487–489PubMedCrossRefGoogle Scholar
  97. Wright S (1932) The roles of mutation, inbreeding, crossbreeding ad selection in evolution. In: Proceedings of the Sixth International Congress on Genetics, vol 1. Ithaca, New york, pp 356–366Google Scholar
  98. Wright S (1940) Breeding structure of populations in relation to speciation: the American naturalist. The University of Chicago Press for the American society of naturalists, vol 74, pp 232–248Google Scholar
  99. Zak M (2007) From quantum entanglement to mirror neurons, Solitons and Fractals, Chaos 34:344–359Google Scholar
  100. Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria 31:715–726Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of EvolutionaryBiology Florence UniversityFlorenceItaly
  2. 2.Centre CavaillèsCNRS, Ecole Normale SupérieureParisFrance

Personalised recommendations