Advertisement

Theory in Biosciences

, Volume 132, Issue 1, pp 1–16 | Cite as

Systems genetics in “-omics” era: current and future development

Review

Abstract

The systems genetics is an emerging discipline that integrates high-throughput expression profiling technology and systems biology approaches for revealing the molecular mechanism of complex traits, and will improve our understanding of gene functions in the biochemical pathway and genetic interactions between biological molecules. With the rapid advances of microarray analysis technologies, bioinformatics is extensively used in the studies of gene functions, SNP–SNP genetic interactions, LD block–block interactions, miRNA–mRNA interactions, DNA–protein interactions, protein–protein interactions, and functional mapping for LD blocks. Based on bioinformatics panel, which can integrate “-omics” datasets to extract systems knowledge and useful information for explaining the molecular mechanism of complex traits, systems genetics is all about to enhance our understanding of biological processes. Systems biology has provided systems level recognition of various biological phenomena, and constructed the scientific background for the development of systems genetics. In addition, the next-generation sequencing technology and post-genome wide association studies empower the discovery of new gene and rare variants. The integration of different strategies will help to propose novel hypothesis and perfect the theoretical framework of systems genetics, which will make contribution to the future development of systems genetics, and open up a whole new area of genetics.

Keywords

Systems genetics Genome-wide association studies High-throughput technology Genetic network 

Abbreviations

APC

Anaphase promoting complex

APNs

Activity pathway networks

BicAT

Biclustering function enrichment analysis toolbox

CC

The collaborative cross

ceQTLs

Copy number eQTLs

eQTLs

Expression quantitative trait loci

GWAS

Genome-wide association studies

LD

Linkage disequilibrium

LOH

Loss of heterozygosity

QTL

Quantitative trait locus

pQTL

Protein quantitative trait locus

meQTL

Methyl quantitative trait locus

mQTL

Metabolite quantitative trait locus

PPI

Protein–protein interaction

RH

Radiation hybrid

SNPs

Single nucleotide polymorphisms

NMR

Proton nuclear magnetic resonance

References

  1. Abel HJ, Duncavage EJ, Becker N, Armstrong JR, Magrini VJ, Pfeifer JD (2010) SLOPE: a quick and accurate method for locating non-SNP structural variation from targeted next-generation sequence data. Bioinformatics 26(21):2684–2688. doi: 10.1093/bioinformatics/btq528 PubMedCrossRefGoogle Scholar
  2. Abyzov A, Gerstein M (2011) AGE: defining breakpoints of genomic structural variants at single-nucleotide resolution, through optimal alignments with gap excision. Bioinformatics 27(5):595–603. doi: 10.1093/bioinformatics/btq713 PubMedCrossRefGoogle Scholar
  3. Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21:974–984. doi: 10.1101/gr.114876.110 PubMedCrossRefGoogle Scholar
  4. Ackermann M, Beyer A (2012) Systematic detection of epistatic interactions based on allele pair frequencies. PLoS Genet 8(2):e1002463. doi: 10.1371/journal.pgen.1002463 PubMedCrossRefGoogle Scholar
  5. Adam R, Fernando PMV, Wang W, Leonard M, David WT (2007) The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mamm Genome 18:473–481. doi: 10.1007/s00335-007-9045-1 CrossRefGoogle Scholar
  6. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6:55. doi: 10.1186/1471-2105-6-55 PubMedCrossRefGoogle Scholar
  7. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2006) SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22(6):773–774. doi: 10.1093/bioinformatics/btk031 PubMedCrossRefGoogle Scholar
  8. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544. doi: 10.1038/nbt1203 PubMedCrossRefGoogle Scholar
  9. Ahn S, Wang RT, Park CC, Lin A, Leahy RM, Lange K, Smith DJ (2009) Directed mammalian gene regulatory networks using expression and comparative genomic hybridization microarray data from radiation hybrids. PLoS Comput Biol 5(6):e1000407. doi: 10.1371/journal.pcbi.1000407 PubMedCrossRefGoogle Scholar
  10. Alakwaa FM, Solouma NH, Kadah YM (2011) Construction of gene regulatory networks using biclustering and bayesian networks. Theor Biol & Med Modelling 8:39. doi: 10.1186/1742-4682-8-39 CrossRefGoogle Scholar
  11. Axelsson E, Sandmann T, Horn T, Boutros M, Huber W, Fischer B (2011) Extracting quantitative genetic interaction phenotypes from matrix combinatorial RNAi. BMC Bioinformatics 12:342. doi: 10.1186/1471-2105-12-342 PubMedCrossRefGoogle Scholar
  12. Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH et al (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41(3):299–307. doi: 10.1038/ng.332 PubMedCrossRefGoogle Scholar
  13. Babu M, Díaz-Mejía JJ, Vlasblom J, Gagarinova A, Phanse S, Graham C, Yousif F, Ding H et al (2011) Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet 7(11):e1002377. doi: 10.1371/journal.pgen.1002377 PubMedCrossRefGoogle Scholar
  14. Baldwin A, Grueneberg DA, Hellner K, Sawyer J, Grace M, Li W, Harlow E, Munger K (2010) Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proc Natl Acad Sci USA 107(28):12463–12468. doi: 10.1073/pnas.1007462107 Google Scholar
  15. Barrenas F, Chavali S, Holme P, Mobini R, Benson M (2009) Network properties of complex human disease genes identified through genome-wide association studies. PLoS ONE 4(11):e8090. doi: 10.1371/journal.pone.0008090 PubMedCrossRefGoogle Scholar
  16. Battle A, Jonikas MC, Walter P, Weissman JS, Koller D (2010) Automated identification of pathways from quantitative genetic interaction data. Mol Syst Biol 6:379. doi: 10.1038/msb.2010.27 PubMedCrossRefGoogle Scholar
  17. Bebek G, Koyutürk M, Price ND, Chance MR (2012) Network biology methods integrating biological data for translational science. Brief Bioinform 13(4):446–459. doi: 10.1093/bib/bbr075 PubMedCrossRefGoogle Scholar
  18. Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8:639–646. doi: 10.1038/nrg2149 PubMedCrossRefGoogle Scholar
  19. Bell JT, Spector TD (2011) A twin approach to unraveling epigenetics. Trends Genet 27(3):116–125. doi: 10.1016/j.tig.2010.12.005 PubMedCrossRefGoogle Scholar
  20. Bellay J, Atluri G, Sing TL, Toufighi K, Costanzo M, Ribeiro PSM, Pandey G, Baller J et al (2011) Putting genetic interactions in context through a global modular decomposition. Genome Res 21:1375–1387. doi: 10.1101/gr.117176.110 PubMedCrossRefGoogle Scholar
  21. Borevitz JO, Chory J (2004) Genomics tools for QTL analysis and gene discovery. Curr Opin Plant Biol 7:132–136. doi: 10.1016/j.pbi.2004.01.011 PubMedCrossRefGoogle Scholar
  22. Boulesteix AL, Strimmer K (2007) Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform 8(1):32–44. doi: 10.1093/bib/bbl016 PubMedCrossRefGoogle Scholar
  23. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752. doi: 10.1126/science.1069516 PubMedCrossRefGoogle Scholar
  24. Britto R, Sallou O, Collin O, Michaux G, Primig M, Chalmel F (2012) GPSy: a cross-species gene prioritization system for conserved biological processes—application in male gamete development. Nucleic Acids Res 40(W1): W458–W465. doi: 10.1093/nar/gks380 Google Scholar
  25. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E et al (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37:225–232. doi: 10.1038/ng1497 PubMedCrossRefGoogle Scholar
  26. Carter GW, Galas DJ, Galitski T (2009) Maximal extraction of biological information from genetic interaction data. PLoS Comput Biol 5(4):e1000347. doi: 10.1371/journal.pcbi.1000347 PubMedCrossRefGoogle Scholar
  27. Chen J, Xu H, Aronow BJ, Jegga AG (2007) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 8:392. doi: 10.1186/1471-2105-8-392 PubMedCrossRefGoogle Scholar
  28. Chen G, Pourkheirandish M, Sameri M, Wang N, Nair S, Shi Y, Li C, Nevo E et al (2009a) Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley (Hordeum spontaneum). Breeding Sci 59(5):637–644. doi: 10.1270/jsbbs.59.637 CrossRefGoogle Scholar
  29. Chen J, Aronow BJ, Jegga AG (2009b) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10:73. doi: 10.1186/1471-2105-10-73 PubMedCrossRefGoogle Scholar
  30. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009c) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311. doi: 10.1093/nar/gkp427 PubMedCrossRefGoogle Scholar
  31. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC et al (2009d) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Meth 6:677–681. doi: 10.1038/nmeth.1363 CrossRefGoogle Scholar
  32. Chen YA, Tripathi LP, Mizuguchi K (2011) TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery. PLoS ONE 6(3):e17844. doi: 10.1371/journal.pone.0017844 PubMedCrossRefGoogle Scholar
  33. Chesler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BL, Philip VM, Voy BH, Culiat CT et al (2008) The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 19:382–389. doi: 10.1007/s00335-008-9135-8 PubMedCrossRefGoogle Scholar
  34. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437:1365–1369. doi: 10.1038/nature04244 PubMedCrossRefGoogle Scholar
  35. Chipman KC, Singh AK (2009) Predicting genetic interactions with random walks on biological networks. BMC Bioinformatics 10:17. doi: 10.1186/1471-2105-10-17 PubMedCrossRefGoogle Scholar
  36. Choquet H, Meyre D (2010) Genomic insights into early-onset obesity. Genome Med 2(6):36. doi: 10.1186/gm157 PubMedCrossRefGoogle Scholar
  37. Colak R, Moser F, Chu JS-C, Schönhuth A, Chen N, Ester M (2010) Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks. PLoS ONE 5(10):e13348. doi: 10.1371/journal.pone.0013348 PubMedCrossRefGoogle Scholar
  38. Collins SR, Roguev A, Krogan NJ (2010) Quantitative genetic interaction mapping using the E-MAP approach. Methods Enzymol 470:205–231. doi: 10.1016/S0076-6879(10)70009-4 PubMedCrossRefGoogle Scholar
  39. Conde-Pueyo N, Munteanu A, Solé RV, Rodríguez-Caso C (2009) Human synthetic lethal inference as potential anti-cancer target gene detection. BMC Systems Biol 3:116. doi: 10.1186/1752-0509-3-116 CrossRefGoogle Scholar
  40. Consoli L, Lefèvre A, Zivy M, de Vienne D, Damerval C (2002) QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize. Plant Mol Biol 48(5–6):575–581. doi: 10.1023/A:1014840810203 PubMedCrossRefGoogle Scholar
  41. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10:184–194. doi: 10.1038/nrg2537 PubMedCrossRefGoogle Scholar
  42. David WF, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. doi: 10.1093/nar/gkq537 CrossRefGoogle Scholar
  43. de Koning DJ, Haley CS (2005) Genetical genomics in humans and model organisms. Trends Genet 21:377–381. doi: 10.1016/j.tig.2005.05.004 PubMedCrossRefGoogle Scholar
  44. Decourty L, Saveanu C, Zemam K, Hantraye F, Frachon E, Rousselle JC, Fromont-Racine M, Jacquier A (2008) Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles. Proc Natl Acad Sci USA 105(15):5821–5826. doi: 10.1073/pnas.0710533105 PubMedCrossRefGoogle Scholar
  45. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2011) Rare variants create synthetic genome-wide associations. PLoS Biol 9:e1001008. doi: 10.1371/journal.pbio.1000294 CrossRefGoogle Scholar
  46. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, Taylor J, Burnett E et al (2007) A genome-wide association study of global gene expression. Nat Genet 39:1202–1207. doi: 10.1038/ng2109 PubMedCrossRefGoogle Scholar
  47. Doss S, Schadt EE, Drake TA, Lusis AJ (2005) Cis-acting expression quantitative trait loci in mice. Genome Res 15:681–691. doi: 10.1101/gr.3216905 PubMedCrossRefGoogle Scholar
  48. Duarte CW, Zeng ZB (2011) High-confidence discovery of genetic network regulators in expression quantitative trait loci data. Genetics 187:955–964. doi: 10.1534/genetics.110.124685 PubMedCrossRefGoogle Scholar
  49. Dubois PCA, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, Zhernakova A, Heap GAR et al (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42:295–302. doi: 10.1038/ng.543 PubMedCrossRefGoogle Scholar
  50. Editorial (2007) Pinpointing expression differences. Nat Genet 39:1175.doi: 10.1038/ng1007-1175
  51. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428. doi: 10.1038/nature06758 PubMedCrossRefGoogle Scholar
  52. Erten S, Bebek G, Ewing RM, Koyutürk M (2011a) DADA: degree-aware algorithms for network-based disease gene prioritization. BioData Mining 4:19. doi: 10.1186/1756-0381-4-19 PubMedCrossRefGoogle Scholar
  53. Erten S, Bebek G, Koyutürk M (2011b) Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks. J Comput Biol 18(11):1561–1574. doi: 10.1089/cmb.2011.0154 PubMedCrossRefGoogle Scholar
  54. Foss EJ, Radulovic D, Shaffer SA, Ruderfer DM, Bedalov A, Goodlett DR, Kruglyak L (2007) Genetic basis of proteome variation in yeast. Nat Genet 39:1369–1375. doi: 10.1038/ng.2007.22 PubMedCrossRefGoogle Scholar
  55. Franke L, Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78:1011–1025PubMedCrossRefGoogle Scholar
  56. Fu J, Keurentjes JJ, Bouwmeester H, America T, Verstappen FW, Ward JL, Beale MH, de Vos RC et al (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet 41:166–167. doi: 10.1038/ng.308 PubMedCrossRefGoogle Scholar
  57. Furney SJ, Calvo B, Larrañaga P, Lozano JA, Lopez-Bigas N (2008) Prioritization of candidate cancer genes—an aid to oncogenomic studies. Nucleic Acids Res 36(18):e115. doi: 10.1093/nar/gkn482 PubMedCrossRefGoogle Scholar
  58. Gamazon ER, Zhang W, Konkashbaev A, Duan S, Kistner EO, Nicolae DL, Dolan ME, Cox NJ (2010) SCAN: SNP and copy number annotation. Bioinformatics 26(2):259–262. doi: 10.1093/bioinformatics/btp644 PubMedCrossRefGoogle Scholar
  59. Gatti DM, Shabalin AA, Lam TC, Wright FA, Rusyn I, Nobel AB (2009) FastMap: fast eQTL mapping in homozygous populations. Bioinformatics 25(4):482–489. doi: 10.1093/bioinformatics/btn648 PubMedCrossRefGoogle Scholar
  60. Gidskehaug L, Stødkilde-Jørgensen H, Martens M, Martens H (2004) Bridge-PLS regression: two-block bilinear regression without deflation. J Chemometr 18:208–215. doi: 10.1002/cem.862 CrossRefGoogle Scholar
  61. Gordon GM, Du W (2011) Targeting Rb inactivation in cancers by synthetic lethality. Am J Cancer Res 1(6):773–786PubMedGoogle Scholar
  62. Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JB, Abraham LJ et al (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39:1208–1216. doi: 10.1038/ng2119 PubMedCrossRefGoogle Scholar
  63. Gulcher J, Stefansson K (2010) Genetic risk information for common diseases may indeed be already useful for prevention and early detection. Eur J Clin Invest 40(1):56–63. doi: 10.1111/j.1365-2362.2009.02233.x PubMedCrossRefGoogle Scholar
  64. Hall D, Tegström C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief in Funct Genomics 9(2):157–165. doi: 10.1093/bfgp/elp048 CrossRefGoogle Scholar
  65. Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77. doi: 10.1016/j.tplants.2007.11.008 PubMedCrossRefGoogle Scholar
  66. Heap GA, Trynka G, Jansen RC, Bruinenberg M, Swertz MA, Dinesen LC, Hunt KA, Wijmenga C et al (2009) Complex nature of SNP genotype effects on gene expression in primary human leucocytes. BMC Med Genomics 2:1. doi: 10.1186/1755-8794-2-1 PubMedCrossRefGoogle Scholar
  67. Hennessy BTJ, Timms KM, Carey MS, Gutin A, Meyer LA, Flake DD II, Abkevich V, Potter J et al (2010) Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP Ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol 28(22):3570–3576. doi: 10.1200/JCO.2009.27.2997 PubMedCrossRefGoogle Scholar
  68. Hill WG (2010) Understanding and using quantitative genetic variation. Phil Trans R Soc B 365:73–85. doi: 10.1098/rstb.2009.0203 PubMedCrossRefGoogle Scholar
  69. Holford ME, McCusker JP, Cheung KH, Krauthammer M (2012) A semantic web framework to integrate cancer omics data with biological knowledge. BMC Bioinformatics 13(Suppl 1):S10. doi: 10.1186/1471-2105-13-S1-S10 PubMedCrossRefGoogle Scholar
  70. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC (2009) Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res 19:1270–1278. doi: 10.1101/gr.088633.108 PubMedCrossRefGoogle Scholar
  71. Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, Boutros M (2011) Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat Methods 8:341–346. doi: 10.1038/nmeth.1581 PubMedCrossRefGoogle Scholar
  72. Hsu CH, Wang TY, Chu HT, Kao CY, Chen KC (2011) A quantitative analysis of monochromaticity in genetic interaction networks. BMC Bioinformatics 12(Suppl 13):S16. doi: 10.1186/1471-2105-12-S13-S16 PubMedCrossRefGoogle Scholar
  73. Hu P, Bull SB, Jiang H (2012) Gene network modular-based classification of microarray samples. BMC Bioinformatics 13(Suppl 10):S17. doi: 10.1186/1471-2105-13-S10-S17 PubMedCrossRefGoogle Scholar
  74. Huang Z, Wen Y, Shandilya R, Marks JR, Berchuck A, Murphy SK (2006) High throughput detection of M6P/IGF2R intronic hypermethylation and LOH in ovarian cancer. Nucleic Acids Res 34(2):555–563. doi: 10.1093/nar/gkj468 PubMedCrossRefGoogle Scholar
  75. Huang J, Liu Y, Zhang W, Yu H, Han JDJ (2011) eResponseNet: a package prioritizing candidate disease genes through cellular pathways. Bioinformatics 27(16):2319–2320. doi: 10.1093/bioinformatics/btr380 PubMedCrossRefGoogle Scholar
  76. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O et al (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253. doi: 10.1038/ng1522 PubMedCrossRefGoogle Scholar
  77. Huerta S (2008) Advances in the molecular diagnosis and prognosis of colorectal cancer: CRC prognosis. Expert Rev Mol Diagn 8(3):277–288PubMedCrossRefGoogle Scholar
  78. Huggins R, Li LH, Lin YC, Yu AL, Yang HC (2008) Nonparametric estimation of LOH using Affymetrix SNP genotyping arrays for unpaired samples. J Human Genet 53(11–12):983–990. doi: 10.1007/s10038-008-0340-9 CrossRefGoogle Scholar
  79. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951. doi: 10.1038/ng1416 PubMedCrossRefGoogle Scholar
  80. Izmirli M, Arikan B, Bayazit Y, Alptekin D (2011) Associations of polymorphisms in HPC2/ELAC2 and SRD5A2 genes with benign prostate hyperplasia in turkish men. Asian Pacific J Cancer Prev 12:731–733Google Scholar
  81. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391. doi: 10.1016/S0168-9525(01)02310-1 PubMedCrossRefGoogle Scholar
  82. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M et al (2003) A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science 302(5644):449–453. doi: 10.1126/science.1087361 PubMedCrossRefGoogle Scholar
  83. Janssens AC, van Duijn CM (2008) Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 17(R2):R166-R173.doi: 10.1093/hmg/ddn250
  84. Järvinen AP, Hiissa J, Elo LL, Aittokallio T (2008) Predicting quantitative genetic interactions by means of sequential matrix approximation. PLoS ONE 3(9):e3284. doi: 10.1371/journal.pone.0003284 PubMedCrossRefGoogle Scholar
  85. Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, Bartek J, Yaffe MB et al (2009) The combined status of ATM and p53 link tumor development with therapeutic response. Genes & Dev 23:1895–1909. doi: 10.1101/gad.1815309 CrossRefGoogle Scholar
  86. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530. doi: 10.1371/journal.pgen.1000530 PubMedCrossRefGoogle Scholar
  87. Juran BD, Lazaridis KN (2011) Genomics in the post-GWAS era. Semin Liver Dis 31(2):215–222. doi: 10.1055/s-0031-1276641 PubMedCrossRefGoogle Scholar
  88. Kendziorski CM, Chen M, Yuan M, Lan H, Attie AD (2006) Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62(1):19–27. doi: 10.1111/j.1541-0420.2005.00437.x PubMedCrossRefGoogle Scholar
  89. Keurentjes JJB (2009) Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol 12:223–230. doi: 10.1016/j.pbi.2008.12.003 PubMedCrossRefGoogle Scholar
  90. Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, Plas LH, Jansen RC et al (2006) The genetics of plant metabolism. Nat Genet 38:842–849. doi: 10.1038/ng1815 PubMedCrossRefGoogle Scholar
  91. Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D et al (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci USA 104:1708–1713. doi: 10.1073/pnas.0610429104 PubMedCrossRefGoogle Scholar
  92. Keurentjes JJB, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128. doi: 10.1016/j.pbi.2008.01.006 PubMedCrossRefGoogle Scholar
  93. Khan NP, Pandith AA, Hussain MUI, Yousuf A, Khan MS, Siddiqi MA, Wani KA, Mudassar S (2011) Loss of heterozygosity (LOH) of deleted in colorectal cancer (DCC) gene and predisposition to colorectal cancer: Significant association in colorectal cancer patients of Kashmir. J Cancer Res Exp Oncol 3(8):88–94. doi: 10.5897/JCREO11.033 Google Scholar
  94. Kim S, Lee H (2009) An enhanced dimension reduction approach for microarray gene expression data. Interdiscip Bio Central 1(13):1–6. doi: 10.4051/ibc.2009.4.0013 Google Scholar
  95. Kim I, Sinha S (2007) Indelign: a probabilistic framework for annotation of insertions and deletions in a multiple alignment. Bioinformatics 23:289–297. doi: 10.1093/bioinformatics/btl578 PubMedCrossRefGoogle Scholar
  96. Kim KZ, Min JY, Kwon GY, Sung J, Cho S (2011) Directed causal network construction using linkage analysis with metabolic syndrome-related expression quantitative traits. Genom Inform 9(4):143–151. doi: 10.5808/GI.2011.9.4.143 CrossRefGoogle Scholar
  97. Kim J, Li X, Kang MS, Im KB, Genovesio A, Grailhe R (2012) Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through. Cytometry Part A 81A(2):112–119. doi: 10.1002/cyto.a.21150 CrossRefGoogle Scholar
  98. Kliebenstein DJ (2009a) Advancing genetic theory and application by metabolic quantitative trait loci analysis. Plant Cell 21:1637–1646. doi: 10.1105/tpc.109.067611 PubMedCrossRefGoogle Scholar
  99. Kliebenstein DJ (2009b) Quantification of variation in expression networks. Methods Mol Biol 553:227–245. doi: 10.1007/978-1-60327-563-7_11 PubMedCrossRefGoogle Scholar
  100. Kliebenstein D (2009c) Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Ann Rev Plant Biol 60:93–114CrossRefGoogle Scholar
  101. Kliebenstein DJ (2010) Systems biology uncovers the foundation of natural genetic diversity. Plant Physiol 152(2):480–486. doi: 10.1104/pp.109.149328 PubMedCrossRefGoogle Scholar
  102. Kobolt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM et al (2009) VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25:2283–2285. doi: 10.1093/bioinformatics/btp373 CrossRefGoogle Scholar
  103. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D et al (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–426. doi: 10.1126/science.1149504 PubMedCrossRefGoogle Scholar
  104. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, Snyder M, Gerstein MB (2009) PEMer: a computational framework with simulation–based error models for inferring genomic structural variants from massive paired–end sequencing data. Genom Biol 10:R23. doi: 10.1186/gb-2009-10-2-r23 CrossRefGoogle Scholar
  105. Kraft P, Hunter DJ (2009) Genetic risk prediction—are we there yet? N Engl J Med 360(17):1701–1703. doi: 10.1056/NEJMp0810107 PubMedCrossRefGoogle Scholar
  106. Kuiken HJ, Beijersbergen RL (2010) Exploration of synthetic lethal interactions as cancer drug targets. Future Oncol 6(11):1789–1802. doi: 10.2217/fon.10.131 PubMedCrossRefGoogle Scholar
  107. Lam HYK, Mu XJ, Stütz AM, Tanzer A, Cayting PD, Snyder M, Kim PM, Korbel JO, Gerstein MB (2010) Nucleotide-resolution analysis of structural variants using Breakseq and a breakpoint library. Nat Biotechnol 28:47–55. doi: 10.1038/nbt.1600 Google Scholar
  108. Lee S, Hormozdiari F, Alkan C, Brudno M (2009) MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions. Nat Meth 6:473–474. doi: 10.1038/nmeth.f.256 CrossRefGoogle Scholar
  109. Li J, Burmeister M (2005) Genetical genomics: combining genetics with gene expression analysis. Hum Mol Genet 14(Spec No 2):R163–R169. doi: 10.1093/hmg/ddi267 Google Scholar
  110. Li H, Deng H (2010) Systems genetics, bioinformatics and eQTL mapping. Genetica 138:915–924. doi: 10.1007/s10709-010-9480-x PubMedCrossRefGoogle Scholar
  111. Li H, Zhang P (2012) Systems genetics: challenges and developing strategies. Biologia 67(3):435–446. doi: 10.2478/s11756-012-0026-9 CrossRefGoogle Scholar
  112. Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fu J, Risken JAG, Hazendonk E, Prins P et al (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2:e222. doi: 10.1371/journal.pgen.0020222 PubMedCrossRefGoogle Scholar
  113. Li H, Ruan J, Durbin R (2008a) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858. doi: 10.1101/gr.0788212.108 PubMedCrossRefGoogle Scholar
  114. Li Y, Breitling R, Jansen RC (2008b) Generalizing genetical genomics: getting added value from environmental perturbation. Trends Genet 24:518–524. doi: 10.1016/j.tig.2008.08.001 PubMedCrossRefGoogle Scholar
  115. Li Y, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, Jiang H, Albrechtsen A, Andersen G et al (2010) Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet 42:969–972. doi: 10.1038/ng.680 PubMedCrossRefGoogle Scholar
  116. Liu C (2011) Brain eQTL mapping informs genetic studies of psychiatric diseases. Neurosci Bull 27(2):123–133PubMedCrossRefGoogle Scholar
  117. Liu YZ, Wilson SG, Wang L, Liu XG, Guo YF, Li J, Yan H, Deloukas P et al (2008) Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study. PLoS ONE 3(9):e3160. doi: 10.1371/journal.pone.0003160 PubMedCrossRefGoogle Scholar
  118. Liu YZ, Guo YF, Wang L, Tan LJ, Liu XG, Pei YF, Yan H, Xiong DH et al (2009) Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet 5(3):e1000420. doi: 10.1371/journal.pgen.1000420 PubMedCrossRefGoogle Scholar
  119. Ma X, Tarone AM, Li W (2008) Mapping genetically compensatory pathways from synthetic lethal interactions in Yeast. PLoS ONE 3(4):e1922. doi: 10.1371/journal.pone.0001922 PubMedCrossRefGoogle Scholar
  120. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577. doi: 10.1038/nrg2612 PubMedCrossRefGoogle Scholar
  121. MacRae CA, Vasan RS (2011) Next generation GWAS: time to focus on phenotype? Circ Cardiovasc Genet 4(4):334–336. doi: 10.1161/CIRCGENETICS.111.960765 PubMedCrossRefGoogle Scholar
  122. Madi A, Friedman Y, Roth D, Regev T, Bransburg-Zabary S, Jacob EB (2008) Genome holography: deciphering function-form motifs from gene expression data. PLoS ONE 3(7):e2708. doi: 10.1371/journal.pone.0002708 PubMedCrossRefGoogle Scholar
  123. Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytoremed 13(S1):264–279. doi: 10.1080/15226514.2011.568549 Google Scholar
  124. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21. doi: 10.1038/456018a PubMedCrossRefGoogle Scholar
  125. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118(5):1590–1605. doi: 10.1172/JCI34772 PubMedCrossRefGoogle Scholar
  126. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. doi: 10.1038/nature08494 PubMedCrossRefGoogle Scholar
  127. McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141:210–217. doi: 10.1016/j.cell.2010.03.032 PubMedCrossRefGoogle Scholar
  128. Meluh PB, Pan X, Yuan DS, Tiffany C, Chen O, Sookhai-Mahadeo S, Wang X, Peyser BD et al (2008) Analysis of genetic interactions on a genome-wide scale in budding yeast: diploid-based synthetic lethality analysis by microarray. Methods Mol Biol 416:221–247. doi: 10.1007/978-1-59745-321-9_15 PubMedCrossRefGoogle Scholar
  129. Michaelson JJ, Alberts R, Schughart K, Beyer A (2010) Data-driven assessment of eQTL mapping methods. BMC Genomics 11:502. doi: 10.1186/1471-2164-11-502 PubMedCrossRefGoogle Scholar
  130. Mizuarai S, Kotani H (2010) Synthetic lethal interactions for the development of cancer therapeutics: biological and methodological advancements. Hum Genet 128(6):567–575PubMedCrossRefGoogle Scholar
  131. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A et al (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448:470–473. doi: 10.1038/nature06014 PubMedCrossRefGoogle Scholar
  132. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, Han SS, Zaridze D et al (2011) Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 7(10):e1002312. doi: 10.1371/journal.pgen.1002312 PubMedCrossRefGoogle Scholar
  133. Morahan G, Peeva V, Mehta M, Williams R (2008) Systems genetics can provide new insights into immune regulation and autoimmunity. J Autoimmunity 31:233–236. doi: 10.1016/j.jaut.2008.04.011 CrossRefGoogle Scholar
  134. Mordelet F, Vert JP (2011) ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples. BMC Bioinformatics 12:389. doi: 10.1186/1471-2105-12-389 PubMedCrossRefGoogle Scholar
  135. Moreau Y, Tranchevent LC (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13:523–536. doi: 10.1038/nrg3253 PubMedCrossRefGoogle Scholar
  136. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747. doi: 10.1038/nature02797 PubMedCrossRefGoogle Scholar
  137. Nakaoka H, Cui T, Tajima A, Oka A, Mitsunaga S, Kashiwase K, Homma Y, Sato S et al (2011) A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis. PLoS ONE 6(9):e25389. doi: 10.1371/journal.pone.0025389 PubMedCrossRefGoogle Scholar
  138. Nitsch D, Tranchevent LC, Gonçalves JP, Vogt JK, Madeira SC, Moreau Y (2011) PINTA: a web server for network-based gene prioritization from expression data. Nucleic Acids Res 39(W):W334–W338. doi: 10.1093/nar/gkr289 Google Scholar
  139. Nittner D, Lambertz I, Clermont F, Mestdagh P, Köhler C, Nielsen SJ, Jochemsen A, Speleman F et al (2012) Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinal progenitors suppresses retinoblastoma formation. Nat Cell Biol 14:958–965. doi: 10.1038/ncb2556 PubMedCrossRefGoogle Scholar
  140. Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723. doi: 10.1038/nature07629 PubMedCrossRefGoogle Scholar
  141. Oki NO, Motsinger-Reif AA (2011) Multifactor dimensionality reduction as a filter-based approach for genome wide association studies. Front Genet 2:80. doi: 10.3389/fgene.2011.00080 PubMedGoogle Scholar
  142. Ortutay C, Vihinen M (2009) Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res 37(2):622–628. doi: 10.1093/nar/gkn982 PubMedCrossRefGoogle Scholar
  143. Pan X, Yuan DS, Ooi SL, Wang X, Sookhai-Mahadeo S, Meluh P, Boeke JD (2007) dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae. Methods 41(2):206–221. doi: 10.1016/j.ymeth.2006.07.033 PubMedCrossRefGoogle Scholar
  144. Pandey G, Zhang B, Chang AN, Myers CL, Zhu J, Kumar V, Schadt EE (2010) An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Comput Biol 6(9):e1000928. doi: 10.1371/journal.pcbi.1000928 PubMedCrossRefGoogle Scholar
  145. Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Gührs KH, Friedrich S, Nakamura M et al (2011) Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol 21(4):405–418. doi: 10.1111/j.1750-3639.2010.00464.x PubMedCrossRefGoogle Scholar
  146. Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, Fischer J, Maatz H et al (2006) Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2:e172. doi: 10.1371/journal.pgen.0020172 PubMedCrossRefGoogle Scholar
  147. Pharoah PD, Antoniou AC, Easton DF, Ponder BA (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358(26):2796–2803. doi: 10.1056/NEJMsa0708739 PubMedCrossRefGoogle Scholar
  148. Phillips PC (2008) Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867. doi: 10.1038/nrg2452 PubMedCrossRefGoogle Scholar
  149. Pinto D, Marshall C, Feuk L, Scherer SW (2007) Copy-number variation in control population cohorts. Hum Mol Genet 17(3):466–467. doi: 10.1093/hmg/ddm321 CrossRefGoogle Scholar
  150. Plantegenet S, Weber J, Goldstein DR, Zeller G, Nussbaumer C, Thomas J, Weigel D, Harshman K et al (2009) Comprehensive analysis of Arabidopsis expression level polymorphisms with simple inheritance. Mol Syst Biol 5:242. doi: 10.1038/msb.2008.79 PubMedCrossRefGoogle Scholar
  151. Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101. doi: 10.1111/j.1365-313X.2007.03315.x PubMedCrossRefGoogle Scholar
  152. Priami C (2009) Algorithmic systems biology an opportunity for computer science. Communication of the ACM 52(5):80–88. doi: 10.1145/1506409.1506427 CrossRefGoogle Scholar
  153. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P, International Schizophrenia Consortium (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752. doi: 10.1038/nature08185 Google Scholar
  154. Quinlan AR, Clark RA, Sokolova S, Leibowitz ML, Zhang Y, Hurles ME, Mell JC, Hall IM (2010) Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res 20:623–635. doi: 10.1101/gr.102970.109 PubMedCrossRefGoogle Scholar
  155. Radivojac P, Baenziger PH, Kann MG, Mort ME, Hahn MW, Mooney SD (2008) Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24:i241–i247. doi: 10.1093/bioinformatics/btn267 PubMedCrossRefGoogle Scholar
  156. Ransohoff DF, Khoury MJ (2010) Personal genomics: information can be harmful. Eur J Clin Invest 40(1):64–68. doi: 10.1111/j.1365-2362.2009.02232.x PubMedCrossRefGoogle Scholar
  157. Raudenska M, Bittnerova A, Novotny T, Florianova A, Chroust K, Gaillyova R, Semrad B, Kadlecova J et al (2008) Mutation analysis of candidate genes SCN1B, KCND3 and ANK2 in patients with clinical diagnosis of long QT syndrome. Physiol Res 57:857–862PubMedGoogle Scholar
  158. Ritchie MD (2011) Using biological knowledge to uncover the mystery in the search for epistasis in genome-wide association studies. Ann Hum Genet 75(1):172–182. doi: 10.1111/j.1469-1809.2010.00630.x PubMedCrossRefGoogle Scholar
  159. Robbins CM, Hernandez W, Ahaghotu C, Bennett J, Hoke G, Mason T, Pettaway CA, et al. (2008) Association of HPC2/ELAC2 and RNASEL non-synonymous variants with prostate cancer risk in African American familial and sporadic cases. The Prostate 1–8. doi: 10.1002/pros.20841
  160. Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev Genet 7:862–872. doi: 10.1038/nrg1964 PubMedCrossRefGoogle Scholar
  161. Rossi S, Masotti D, Nardini C, Bonora E, Romeo G, Macii E, Benini L, Volinia S (2006) TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res 34:W285–W292. doi: 10.1093/nar/gkl340 PubMedCrossRefGoogle Scholar
  162. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–1178. doi: 10.1038/nature04209 PubMedCrossRefGoogle Scholar
  163. Saidel GM, Liang J (2007) ABME special issue: systems biology, bioinformatics, and computational biology. Ann Biomed Eng 35(6):861–862. doi: 10.1007/s10439-007-9325-7 CrossRefGoogle Scholar
  164. Sampson JN, Jacobs K, Wang Z, Yeager M, Chanock S, Chatterjee N (2012) A two-platform design for next generation genome-wide association studies. Genet Epidemiol 36(4):401–409. doi: 10.1002/gepi.21634 CrossRefGoogle Scholar
  165. Sanna S, Li B, Mulas A, Sidore C, Kang HM, Jackson AU, Piras MG, Usala G et al (2011) Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants that double the explained heritability. PLoS Genet 7(7):e1002198. doi: 10.1371/journal.pgen.1002198 PubMedCrossRefGoogle Scholar
  166. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B et al (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6(5):e107. doi: 10.1371/journal.pbio.0060107 PubMedCrossRefGoogle Scholar
  167. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H et al (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528. doi: 10.1126/science.1098918 PubMedCrossRefGoogle Scholar
  168. Serrano MÁ, Boguñá M, Sagués F (2012) Uncovering the hidden geometry behind metabolic networks. Mol BioSyst 8(3):843–850. doi: 10.1039/C2MB05306C PubMedCrossRefGoogle Scholar
  169. Sharma A, Chauhan RS (2012) In Silico Identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Comp Funct Genomics. doi: 10.1155/2012/914843
  170. Sharp AJ, Selzer RR, Veltman JA, Gimelli S, Gimelli G, Striano P, Coppola A, Regan R et al (2007) Characterization of a recurrent 15q24 microdeletion syndrome. Hum Mol Genet 16:567–572. doi: 10.1093/hmg/ddm016 PubMedCrossRefGoogle Scholar
  171. Sieberts SK, Schadt EE (2007) Moving toward a system genetics view of disease. Mamm Genome 18:389–401. doi: 10.1007/s00335-007-9040-6 PubMedCrossRefGoogle Scholar
  172. Simpson JT, McIntyre RE, Adams DJ, Durbin R (2010) Copy number variant detection in inbred strains from short read sequence data. Bioinformatics 26(4):565–567. doi: 10.1093/bioinformatics/btp693 PubMedCrossRefGoogle Scholar
  173. Slavoff SA, Liu DS, Cohen JD, Ting AY (2011) Imaging protein–protein interactions inside living cells via interaction-dependent fluorophore ligation. J Am Chem Soc 133(49):19769–19776. doi: 10.1021/ja206435e PubMedCrossRefGoogle Scholar
  174. Steckel M, Molina-Arcas M, Weigelt B, Marani M, Warne PH, Kuznetsov H, Kelly G, Saunders B et al (2012) Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res 22(8):1227–1245. doi: 10.1038/cr.2012.82 PubMedCrossRefGoogle Scholar
  175. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M et al (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968. doi: 10.1016/j.cell.2005.08.029 PubMedCrossRefGoogle Scholar
  176. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M et al (2007) Population genomics of human gene expression. Nat Genet 39:1217–1224. doi: 10.1038/ng2142 PubMedCrossRefGoogle Scholar
  177. Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187(2):367–383. doi: 10.1534/genetics.110.120907 PubMedCrossRefGoogle Scholar
  178. Stylianou IM, Affourtit JP, Shockley KR, Wilpan RY, Abdi FA, Bhardwaj S, Rollins J, Churchill GA et al (2008) Applying gene expression, proteomics and single-nucleotide polymorphism analysis for complex trait gene identification. Genetics 178:1795–1805. doi: 10.1534/genetics.107.081216 PubMedCrossRefGoogle Scholar
  179. Sun M, Li N, Dong W, Chen Z, Liu Q, Xu Y, He G, Shi Y et al (2009) Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet 84(6):807–813. doi: 10.1016/j.ajhg.2009.04.018 PubMedCrossRefGoogle Scholar
  180. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L et al (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190(2):437–447. doi: 10.1534/genetics.111.132597 PubMedCrossRefGoogle Scholar
  181. Swertz MA, Velde KJ, Tesson BM, Scheltema RA, Arends D, Vera G, Alberts R, Dijkstra M et al (2010) XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments. Genome Biol 11:R27. doi: 10.1186/gb-2010-11-3-r27 PubMedCrossRefGoogle Scholar
  182. Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ et al (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656–662. doi: 10.1038/ng.846 PubMedCrossRefGoogle Scholar
  183. Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M, Lopez-Bigas N, Ouzounis C et al (2006) Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res 34(10):3067–3081. doi: 10.1093/nar/gkl381 PubMedCrossRefGoogle Scholar
  184. Turinsky AL, Turner B, Borja RC, Gleeson JA, Heath M, Pu S, Switzer T, Dong D et al (2011) DAnCER: disease-annotated chromatin epigenetics resource. Nucleic Acids Res 39(suppl 1):D889–D894. doi: 10.1093/nar/gkq857 PubMedCrossRefGoogle Scholar
  185. Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H et al (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727–732. doi: 10.1038/ng1562 PubMedCrossRefGoogle Scholar
  186. Usher J, Balderas-Hernandez V, Quon P, Gold ND, Martin VJJ, Mahadevan R, Baetz K (2011) Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae. Genes Genomes Genetics 1(4):247–258. doi: 10.1534/g3.111.000695 PubMedGoogle Scholar
  187. van Driel MA, Brunner HG (2006) Bioinformatics methods for identifying candidate disease genes. Human Genomics 2(6):429–432PubMedCrossRefGoogle Scholar
  188. Wang K, Dickson SP, Stolle CA, Krantz ID, Goldstein DB, Hakonarson H (2010) Interpretation of association signals and identification of causal variants from genome-wide association studies. Am J Hum Genet 86:730–742. doi: 10.1016/j.ajhg.2010.04.003 PubMedCrossRefGoogle Scholar
  189. Weber CC, Hurst LD (2011) Support for multiple classes of local expression clusters in Drosophila melanogaster, but no evidence for gene order conservation. Genome Biol 12:R23. doi: genomebiology.com/2011/12/3/R23 PubMedCrossRefGoogle Scholar
  190. Weidle UH, Maisel D, Eick D (2011) Synthetic lethality-based targets for discovery of new cancer therapeutics. Cancer Genom Proteom 8:159–172Google Scholar
  191. Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3(9):1687–1701. doi: 10.1371/journal.pgen.0030162 PubMedCrossRefGoogle Scholar
  192. West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St Clair DA (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450. doi: 10.1534/genetics.106.064972 PubMedCrossRefGoogle Scholar
  193. Whitlock MC (2005) Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18(5):1368–1373. doi: 10.1111/j.1420-9101.2005.00917.x PubMedCrossRefGoogle Scholar
  194. Witte JS (2010) Genome-wide association studies and beyond. Ann Rev Pub Health 31:9–20. doi: 10.1146/annurev.publhealth.012809.103723 CrossRefGoogle Scholar
  195. Wray NR, Purcell SM, Visscher PM (2011) Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol 9(1):e1000579. doi: 10.1371/journal.pbio.1000579 PubMedCrossRefGoogle Scholar
  196. Wu C, Delano DL, Mitro N, Su SV, Janes J, McClurg P, Batalov S, Welch GL et al (2008) Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet 4(5):e1000070. doi: 10.1371/journal.pgen.1000070 PubMedCrossRefGoogle Scholar
  197. Wu CC, Asgharzadeh S, Triche TJ, D’Argenio DZ (2010) Prediction of human functional genetic networks from heterogeneous data using RVM-based ensemble learning. Bioinformatics 26(6):807–813. doi: 10.1093/bioinformatics/btq044 PubMedCrossRefGoogle Scholar
  198. Xie C, Tammi M (2009) CNV–seq, a new method to detect copy number variation using high–throughput sequencing. BMC Bioinformatics 10:80. doi: 10.1186/1471-2105-10-80 PubMedCrossRefGoogle Scholar
  199. Yang B, Navarro N, Noguera JL, Muñoz M, Guo TF, Yang KX, Ma JW, Folch JM et al (2011a) Building phenotype networks to improve QTL detection: a comparative analysis of fatty acid and fat traits in pigs. J Anim Breed Genet 128:329–343. doi: 10.1111/j.1439-0388.2011.00928.x PubMedCrossRefGoogle Scholar
  200. Yang Q, Qiu C, Yang J, Wu Q, Cui Q (2011b) miREnvironment Database: providing a bridge for microRNAs, environmental factors, and phenotypes. Bioinformatics 27(23):3329–3330. doi: 10.1093/bioinformatics/btr556 PubMedCrossRefGoogle Scholar
  201. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871. doi: 10.1093/bioinformatics/btp394 PubMedCrossRefGoogle Scholar
  202. Zhang SQ, Ching WK, Tsing NK, Leug HY, Guo D (2010) A new multiple regression approach for the construction of genetic regulatory networks. Artificial Intel in Med 48(2):153–160. doi: 10.1016/j.artmed.2009.11.001 CrossRefGoogle Scholar
  203. Zhu M, Wu Q (2008) Transcription network construction for large-scale microarray datasets using a high-performance computing approach. BMC Genomics 9(Suppl 1):S5. doi: 10.1186/1471-2164-9-S1-S5 CrossRefGoogle Scholar
  204. Zhu M, Zhao S (2008) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3(7):420–427. doi: 10.7150/ijbs.3.420 Google Scholar
  205. Zhu M, Yu M, Zhao S (2009) Understanding quantitative genetics in the systems biology era. Int J Biol Sci 5(2):161–170. doi: 10.7150/ijbs.5.161 PubMedCrossRefGoogle Scholar
  206. Zhu C, Wang Y, Li Y, Bhatti KH, Tian Y, Wu J (2011) Overexpression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection. Plant Physiol Biochem 49(11):1264–1271. doi: 10.1016/j.plaphy.2011.09.001 PubMedCrossRefGoogle Scholar
  207. Ziebarth JD, Cook MN, Wang X, Williams RW, Lu L, Cui Y (2012) Treatment- and population-dependent activity patterns of behavioral and expression QTLs. PLoS ONE 7(2):e31805. doi: 10.1371/journal.pone.0031805 PubMedCrossRefGoogle Scholar
  208. Zöllner S (2010) CopyMap: localization and calling of copy number variation by joint analysis of hybridization data from multiple individuals. Bioinformatics 26(21):2776–2777. doi: 10.1093/bioinformatics/btq515 PubMedCrossRefGoogle Scholar
  209. Zou W, Aylor DL, Zeng ZB (2007) eQTL Viewer: visualizing how sequence variation affects genome-wide transcription. BMC Bioinformatics 8:7. doi: 10.1186/1471-2105-8-7 PubMedCrossRefGoogle Scholar
  210. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109(4):1193–1198. doi: 10.1073/pnas.1119675109 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, College of Environmental and Biological EngineeringChongqing Technology and Business UniversityChongqingPeople’s Republic of China

Personalised recommendations