Theory in Biosciences

, Volume 131, Issue 4, pp 215–223 | Cite as

Reference genes for measuring mRNA expression



The aim of this review is to find answers to some of the questions surrounding reference genes and their reliability for quantitative experiments. Reference genes are assumed to be at a constant expression level, over a range of conditions such as temperature. These genes, such as GADPH and beta-actin, are used extensively for gene expression studies using techniques like quantitative PCR. There have been several studies carried out on identifying reference genes. However, a lot of evidence indicates issues to the general suitability of these genes. Recent studies had shown that different factors, including the environment and methods, play an important role in changing the expression levels of the reference genes. Thus, we conclude that there is no reference gene that can deemed suitable for all the experimental conditions. In addition, we believe that every experiment will require the scientific evaluation and selection of the best candidate gene for use as a reference gene to obtain reliable scientific results.


Reliability Beta-actin Reference genes Polymerase chain reactions 



Glyceraldehyde-3-phosphate dehydrogenase


Polymerase chain reaction


Microtubule affinity regulating kinase 3


β2 Microglobulin


Corneal neovascularisation




TATA binding protein


Quantitative real-time polymerase chain reaction


Asparagine-linked glycosylation 9


Ribosomal protein L13a


Quantitative real-time PCR


Hydroxymethylbilane synthase


Quantitative reverse transcription-polymerase chain reaction


Housekeeping genes


Hypoxanthine phosphoribosyltransferase 1


Reverse transcription-quantitative polymerase chain reaction


Real time polymerase chain reaction


Sequential analysis of gene expression


Succinate dehydrogenase


One way analysis of variance


Ribonuclease protection assays


Conflict of interest

There are no competing interests cited by the authors of this paper.


  1. Aleksandar RÄ, Stefanie T, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856–862Google Scholar
  2. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250 PMID: 15289330PubMedCrossRefGoogle Scholar
  3. Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 21(10):49 PMID: 20302670CrossRefGoogle Scholar
  4. Barber RD, Dan WH, Coleman1 RA, Clark BJ (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21(3):389–395. doi: 10.1152/physiolgenomics.00025.2005 Google Scholar
  5. Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 6(10):1 PMID: 19126214CrossRefGoogle Scholar
  6. Caradec J, Sirab N, Keumeugni C, Moutereau S, Chimingqi M, Matar C, Revaud D, Bah M, Manivet P, Conti M, Loric S (2010) Desperate house genes: the dramatic example of hypoxia. Br J Cancer 102(6):1037–1043 PMID: 20179706PubMedCrossRefGoogle Scholar
  7. Chari R, Lonergan KM, Pikor LA, Coe BP, Zhu CQ, Chan TH, MacAulay CE, Tsao MS, Lam S, Ng RT, Lam WL (2010) A sequence-based approach to identify reference genes for gene expression analysis. BMC Med Genomics 3(3):32PubMedCrossRefGoogle Scholar
  8. Chia CY, Lim CW, Leong WT, Ling MH (2010) High expression stability of microtubule affinity regulating kinase 3 (MARK3) makes it a reliable reference gene. IUBMB Life 62(3):200–203PubMedCrossRefGoogle Scholar
  9. Cicinnati VR, Shen Q, Sotiropoulos GC, Radtke A, Gerken G, Beckebaum S (2008) Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR. BMC Cancer 27(8):350 PMID: 19036168CrossRefGoogle Scholar
  10. Curtis KM, Gomez LA, Rios C, Garbayo E, Raval AP, Perez-Pinzon MA, Schiller PC (2010) EF1alpha and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC Mol Biol 17(11):61 PMID: 20716364CrossRefGoogle Scholar
  11. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2(9):e898 PMID: 17878933PubMedCrossRefGoogle Scholar
  12. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN (2005) Normalization of gene expression measurements in tumour tissues: comparison of 13 endogenous control genes. Lab Invest 85:154–159PubMedGoogle Scholar
  13. Dhar AK, Bowers RM, Licon KS, Veazey G, Read B (2009) Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Mol Immunol 46(8–9):1688–1695 PMID: 19297025PubMedCrossRefGoogle Scholar
  14. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37(1):112–114, 116, and 118–119Google Scholar
  15. Fu LY, Jia HL, Dong QZ, Wu JC, Zhao Y, Zhou HJ, Ren N, Ye QH, Qin LX (2009) Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses. BMC Cancer 6(9):49 PMID: 19200351CrossRefGoogle Scholar
  16. Fu J, Bian L, Zhao L, Dong Z, Gao X, Luan H, Sun Y, Song H (2010) Identification of genes for normalization of quantitative real-time PCR data in ovarian tissues. Acta Biochim Biophys Sin (Shanghai) 42(8):568–574 PMID: 20705598CrossRefGoogle Scholar
  17. Fujimori S, Hidaka Y, Davidson BL, Palella TD, Kelley WN (1988) Identification of a single nucleotide change in a mutant gene for hypoxanthine–guanine phosphoribosyltransferase (HPRT Ann Arbor). Hum Genet 79(1):39–43. doi: 10.1007/BF00291707 PMID 2896620PubMedCrossRefGoogle Scholar
  18. Gerard CJ, Andrejka LM, Macina RA (2000) synthase 6 as an endogenous control in the quantitative RT-PCR analysis of clinical cancer samples. Mol Diagn 5(1):39–46 PMID: 10837088PubMedGoogle Scholar
  19. Glaysher S, Gabriel FG, Johnson P, Polak M, Knight LA, Parker K, Poole M, Narayanan A, Cree IA (2010) NHS collaborative research programme for predictive oncology. Molecular basis of chemosensitivity of platinum pre-treated ovarian cancer to chemotherapy. Br J Cancer 103(5):656–662PubMedCrossRefGoogle Scholar
  20. Greer S, Honeywell R, Geletu M, Arulanandam R, Raptis L (2010). Housekeeping genes; expression levels may change with density of cultured cells. J Immunol Methods 355(1–2):76–79 (PMID 20171969)Google Scholar
  21. Gur-Dedeoglu B, Konu O, Bozkurt B, Ergul G, Seckin S, Yulug IG (2009) Identification of endogenous reference genes for qRT-PCR analysis in normal matched breast tumour tissues. Oncol Res 17(8):353–365 PMID: 19544972PubMedCrossRefGoogle Scholar
  22. Harrison PJ, Laatikainen LM, Tunbridge EM, Eastwood SL (2010) Human brain weight is correlated with expression of the ‘housekeeping genes’ beta-2-microglobulin (beta2M) and TATA-binding protein (TBP). Neuropathol Appl Neurobiol 36:498–504PubMedCrossRefGoogle Scholar
  23. Heng SSJ, Chan OYW, Keng BMH, Ling MHT (2011) Glucan biosynthesis protein G (mdoG) is a suitable reference gene in Escherichia coli K-12. ISRN Microbiol (article ID 469053)Google Scholar
  24. Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51(10):1694–1706PubMedCrossRefGoogle Scholar
  25. Hu M (2006) Serial analysis of gene expression. Nature Protoc 1(4):1743–1760. doi: 10.1038/nprot.2006.269 Google Scholar
  26. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284 PMID: 15815687PubMedCrossRefGoogle Scholar
  27. Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 19(10):71 PMID: 20403198CrossRefGoogle Scholar
  28. Hunt M (2006) Real time PCR tutorial. The Board of Trustees of the University of South Carolina, Bustin. Accessed 31 January 2007
  29. Infante C, Matsuoka MP, Asensio E, Cañavate JP, Reith M, Manchado M (2008) Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Biol 6(9):28 PMID: 18325098CrossRefGoogle Scholar
  30. Innis MA, Gelfard DH, Sninsky JJ, White TJ (eds) (1990) PCR protocols: a guide to methods and applications. Academic Press, San DiegoGoogle Scholar
  31. Janssens N, Janicot M, Perera T, Bakker A (2004) Housekeeping genes as internal standards in cancer research. Mol Diagn 8(2):107–113 PMID: 15527325PubMedCrossRefGoogle Scholar
  32. Ke LD, Chen Z, Yung WK (2000) A reliability test of standard-based quantitative PCR: exogenous vs. endogenous standards. Mol Cell Probes 14(2):127–135PubMedCrossRefGoogle Scholar
  33. Khimani AH, Mhashilkar AM, Mikulskis A, O’Malley M, Liao J, Mayer P, Golenko EE, Chada S, Killian JB, Lott ST (2005) Housekeeping genes in cancer: normalization of array data. Biotechniques 38:739–745PubMedCrossRefGoogle Scholar
  34. Kreuzer KA, Lass U, Landt O, Nitsche A, Laser J, Ellerbrok H, Pauli G, Huhn D, Schmidt CA (1999) Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem 45(2):297–300PubMedGoogle Scholar
  35. Ledet-Jensen J, Ørntoft T (2004) Normalization of real-time quantitative RT-PCR data: a model based variance estimation approach to identify genes suited for normalization—applied to bladder- and colon-cancer data-sets. Cancer Res 64:5245–5250CrossRefGoogle Scholar
  36. Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P (2010) Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol 20(11):8 PMID: 20089196CrossRefGoogle Scholar
  37. Lehmann MH, Weber J, Gastmann O, Sigusch HH (2002) Pseudogene-free amplification of human GAPDH cDNA. Biotechniques 33(4):766, 769–770Google Scholar
  38. Li YL, Ye F, Hu Y, Lu WG, Xie X (2009) Identification of suitable reference genes for gene expression studies of human serous ovarian cancer by real-time polymerase chain reaction. Anal Biochem 394(1):110–116PubMedCrossRefGoogle Scholar
  39. Maccoux LJ, Clements DN, Salway F, Day PJ (2007) Identification of new reference genes for the normalisation of canine osteoarthritic joint tissue transcripts from microarray data. BMC Mol Biol 25(8):62 PMID: 17651481CrossRefGoogle Scholar
  40. Malik AN, Shahni R, Rodriguez-de-Ledesma A, Laftah A, Cunningham P (2011) Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun 412(1):1–7PubMedCrossRefGoogle Scholar
  41. Morga B, Arzul I, Faury N, Renault T (2010) Identification of genes from flat oyster Ostrea edulis as suitable housekeeping genes for quantitative real time PCR. Fish Shellfish Immunol 11(6):805–816Google Scholar
  42. Mori R, Wang Q, Danenberg KD, Pinski JK, Danenberg PV (2008) Both beta-actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer. Prostate 68(14):1555–1560PubMedCrossRefGoogle Scholar
  43. Narsai R, Ivanova A, Ng S, Whelan J (2010) Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol 31(10):56 PMID: 20353606CrossRefGoogle Scholar
  44. Noriega NC, Kohama SG, Urbanski HF (2010) Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain. BMC Mol Biol 21(11):47CrossRefGoogle Scholar
  45. Patino WD, Mian OY, Hwang PM (2002) Serial analysis of gene expression: technical considerations and applications to cardiovascular biology. Circ Res 91:565–569. doi: 10.1161/01.RES.0000036018.76903.18
  46. Paul S, Mandal SK, Bhattacharyya SS, Boujedaini N, Khuda-Bukhsh AR (2010) In vitro and in vivo studies demonstrate anticancer property of root extract of Polygala senega. J Acupunct Meridian Stud 3(3):188–196 PMID: 20869020PubMedCrossRefGoogle Scholar
  47. Pfaffl MW, Tichopád A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515PubMedCrossRefGoogle Scholar
  48. Pinto FL, Thapper A, Sontheim W, Lindblad P (2009) Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 10:79PubMedCrossRefGoogle Scholar
  49. Popovici V, Goldstein DR, Antonov J, Jaggi R, Delorenzi M, Wirapati P (2009) Selecting control genes for RT-QPCR using public microarray data. BMC Bioinform 2(10):42 PMID: 19187545CrossRefGoogle Scholar
  50. Ren S, Zhang F, Li C, Jia C, Li S, Xi H, Zhang H, Yang L, Wang Y (2010) Selection of housekeeping genes for use in quantitative reverse transcription PCR assays on the murine cornea. Mol Vis 11(16):1076–1086Google Scholar
  51. Reverter A, Ingham A, Dalrymple BP (2008) Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes. Biodata Min 1:8. doi: 10.1186/1756-0381-1-8 PubMedCrossRefGoogle Scholar
  52. Rho HW, Lee BC, Choi ES, Choi IJ, Lee YS, Goh SH (2010) Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR. BMC Cancer 28(10):240CrossRefGoogle Scholar
  53. Rosic NN, Pernice M, Rodriguez-Lanetty M, Hoegh-Guldberg O (2010) Validation of housekeeping genes for gene expression studies in symbiodinium exposed to thermal and light stress. Mar Biotechnol (NY) 13(3):355–365CrossRefGoogle Scholar
  54. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52(Pt 5):403–408 PMID: 12721316PubMedCrossRefGoogle Scholar
  55. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46(1–2):69–81PubMedCrossRefGoogle Scholar
  56. Smith RD, Ogden CW, Penny MA (2001) Exclusive amplification of cDNA template (EXACT) RT-PCR to avoid amplifying contaminating genomic pseudogenes. Biotechniques 31(4):776–778, 780, 782Google Scholar
  57. Spanier K, Leese F, Mayer C, Colbourne J, Gilbert D, Pfrender M, Tollrian R (2010) Predator-induced defenses in Daphnia pulex: selection and evaluation of internal reference genes for gene expression studies with real-time PCR. BMC Mol Biol 29(11):50CrossRefGoogle Scholar
  58. Synnergren J, Giesler TL, Adak S, Tandon R, Noaksson K, Lindahl A, Nilsson P, Nelson D, Olsson B, Englund MC, Abbot S, Sartipy P (2007) Differentiating human embryonic stem cells express a unique housekeeping gene signature. Stem Cells 25(2):473–480 PMID: 17284652PubMedCrossRefGoogle Scholar
  59. Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 30(10):99CrossRefGoogle Scholar
  60. Too IHK, Ling MHT (2011) Signal peptidase complex subunit 1 (SPCS1) and hydroxyacyl-CoA dehydrogenase beta subunit (HADHB) are suitable reference genes in human lungs. ISRN Bioinformatics (article ID 790452)Google Scholar
  61. Tunbridge EM, Eastwood SL, Harrison PJ (2010) Changed relative to what? Housekeeping genes and normalization strategies in human brain gene expression studies. Biol Psychiatry 36(6):498–504Google Scholar
  62. Turabelidze A, Guo S, DiPietro LA (2010) Importance of housekeeping gene selection for accurate reverse transcription-quantitative polymerase chain reaction in a wound healing model. Wound Repair Regen 18:460–462PubMedCrossRefGoogle Scholar
  63. Ullmannová V, Haskovec C (2003) The use of housekeeping genes (HKG) as an internal control for the detection of gene expression by quantitative real-time RT-PCR. Folia Biol (Praha) 49(6):211–216 PMID: 14748434Google Scholar
  64. van Guilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626 PMID: 18474036CrossRefGoogle Scholar
  65. Vandesompele V, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. doi: 10.1186/gb-2002-3-7-research0034
  66. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedCrossRefGoogle Scholar
  67. Wan G, Yang K, Lim Q, Zhou L, He BP, Wong HK, Too HP (2010) Identification and validation of reference genes for expression studies in a rat model of neuropathic pain. Biochem Biophys Res Commun 400(4):575–580PubMedCrossRefGoogle Scholar
  68. Wu YY, Rees JL (2000) Variation in epidermal housekeeping gene expression in different pathological states. Acta Derm Venereol 80(1):2–3PubMedCrossRefGoogle Scholar
  69. Yamamoto M, Wakatsuki T, Hada A, Ryo A (2001) Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 250(1–2):45–66 PMID: 11251221PubMedCrossRefGoogle Scholar
  70. Yang L, Takuno S, Waters ER, Gaut BS (2011) Lowly expressed genes in Arabidopsis thaliana bear the signature of possible pseudogenization by promoter degradation. Mol Biol Evol 28(3):1193–1203PubMedCrossRefGoogle Scholar
  71. Zainuddin A, Chua KH (2010) Abdul Rahim N, Makpol S. Effect of experimental treatment on GAPDH mRNA expression as a housekeeping gene in human diploid fibroblasts. BMC Mol Biol 14(11):59 PMID: 20707929CrossRefGoogle Scholar
  72. Zainuddin A, Chua KH, Abdul RN, Makpol S (2010) Effect of experimental treatment on GAPDH mRNA expression as a housekeeping gene in human diploid fibroblasts. BMC Mol Biol 14:11–59Google Scholar
  73. Zhang X, Ding L, Sandford AJ (2005) Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Mol Biol 6:4. doi: 10.1186/1471-2199-6-4 PubMedCrossRefGoogle Scholar
  74. Zhu J, He F, Hu S, Yu J (2008) On the nature of human housekeeping genes. Trends Genet 24(10):481–484PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Edencore TechnologiesThaneIndia
  2. 2.Department of ZoologyThe University of MelbourneMelbourneAustralia

Personalised recommendations