Theory in Biosciences

, Volume 131, Issue 2, pp 95–102 | Cite as

Integrating heterogeneous gene expression data for gene regulatory network modelling

  • Alina SîrbuEmail author
  • Heather J. Ruskin
  • Martin Crane
Original Paper


Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors’ knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets.


Gene expression Wavelets Data integration Genetic regulatory networks Complex systems Mathematical modelling 

List of abbreviations


Gene regulatory network


Messenger RNA


Complementary DNA


Residual sum of squares


Spellman dataset


PramilaL dataset


PramilaS dataset


Hasse dataset



This work has been developed under an ‘Embark Initiative’ grant from the Irish Research Council for Science, Engineering and Technology.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  2. Alvarez-Buylla ER, Benitez M, Davila EB, Chaos A, Espinosa-Soto C, Padilla-Longoria P (2007) Gene regulatory network models for plant development. Curr Opin Plant Biol 10(1):83–91. doi: 10.1016/j.pbi.2006.11.008. Accessed Oct 2009Google Scholar
  3. Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. Methods Mol Biol (Clifton, NJ) 396:71–91. Accessed May 2009Google Scholar
  4. Bernard A, Hartemink AJ (2005) Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. In: Proceedings of Pacific symposium on biocomputing. World Scientific, Duke University, Dept of Computer Science, Durham, NC 27708, USA, pp 459–470. Accessed Nov 2008
  5. Boslaugh S, Watters PA (2008) (eds) Statistics in a nutshell. O’Reilly Media, Inc., SebastopalGoogle Scholar
  6. Cheng C, Shen K, Song C, Luo J, Tseng GC (2009) Ratio adjustment and calibration scheme for gene-wise normalization to enhance microarray inter-study prediction. Bioinformatics 25(13):1655–1661. doi: 10.1093/bioinformatics/btp292. Accessed June 2009Google Scholar
  7. Do JH, Choi DK (2006) Normalization of microarray data: single-labeled and dual-labeled arrays. Mol Cells 22(3):254–261PubMedGoogle Scholar
  8. Donoho D, Maleki A, Shahram M (1995) Wavelab and reproducible research. Accessed Jan 2010
  9. Fomekong-Nanfack Y, Postma M, Kaandorp J (2009) Inferring drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis. BMC Syst Biol 3(1):94. doi: 10.1186/1752-0509-3-94. Accessed Oct 2009
  10. Huttenhower C, Mutungu KT, Indik N, Yang W, Schroeder M, Forman JJ, Troyanskaya OG, Coller HA (2009) Detailing regulatory networks through large scale data integration. Bioinformatics 25(24):3267–3274. doi: 10.1093/bioinformatics/btp588. Accessed Jan 2010Google Scholar
  11. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1):118–127. doi: 10.1093/biostatistics/kxj037. Accessed Feb 2010Google Scholar
  12. Kaiser G (1994) A friendly guide to wavelets. Birkhauser, Boston. Accessed Dec 2009
  13. Kundaje A, Xin X, Lan C, Lianoglou S, Zhou M, Zhang L, Leslie C (2008) A predictive model of the oxygen and heme regulatory network in yeast. PLoS Comput Biol 4(11):e1000,224. doi: 10.1371/journal.pcbi.1000224
  14. Lim WK, Wang K, Lefebvre C, Califano A (2007) Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23(13):i282–i288. doi: 10.1093/bioinformatics/btm201. Accessed Feb 2010Google Scholar
  15. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. The American Statistician 32(1):12–16Google Scholar
  16. Noman N, Iba H (2006) Inference of genetic networks using S-system: information criteria for model selection. In: GECCO ’06: proceedings of the 8th annual conference on genetic and evolutionary computation. ACM, New York, NY, USA, pp 263–270. Accessed Oct 2008
  17. Noman N, Iba H (2007) Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE/ACM Trans Comput Biol Bioinform 4(4):634–647PubMedCrossRefGoogle Scholar
  18. Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB (2008) Global control of cell-cycle transcription by coupled cdk and network oscillators. Nature 453(7197):944–947. doi: 10.1038/nature06955. Accessed Sep 2009Google Scholar
  19. Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden LL (2002) Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev 16(23):3034–3045. doi: 10.1101/gad.1034302. Accessed Sep 2009Google Scholar
  20. Pramila T, Wu W, Miles S, Noble WS, Breeden LL (2006) The Forkhead transcription factor HCM1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 20(16):2266–2278. doi: 10.1101/gad.1450606. Accessed Sep 2009Google Scholar
  21. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11(1):15–29. doi: 10.1093/bib/bbp057. Accessed Jan 2010Google Scholar
  22. Savageau MA (1988) Introduction to S-systems and the underlying power-law formalism. Math Comput Model 11:546–551. Accessed June 2009
  23. Schlitt T, Brazma A (2007) Current approaches to gene regulatory network modelling. BMC Bioinform 8(Suppl 6):S9. doi: 10.1186/1471-2105-8-S6-S9. Accessed Feb 2009
  24. Shabalin AA, Tjelmeland H, Fan C, Perou CM, Nobel AB (2008) Merging two gene-expression studies via cross-platform normalization. Bioinformatics 24(9):1154–1160. doi: 10.1093/bioinformatics/btn083. Accessed Feb 2010Google Scholar
  25. Sîrbu A, Ruskin HJ, Crane M (2010) Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinform 11(59)Google Scholar
  26. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297. Accessed Feb 2009
  27. Wang Y, Joshi T, Zhang XS, Xu D, Chen L (2006) Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22(19):2413–2420. doi: 10.1093/bioinformatics/btl396. Accessed Feb 2010Google Scholar
  28. Wessa P (2008) Notched boxplots (v1.0.5.) in free statistics software (v1.1.23-r4). Accessed Dec 2009
  29. Wessels LFA, Reinders MJT, Backer E (2001) Robust genetic network modeling by adding noisy data. In: IEEE—EURASIP workshop on nonlinear signal and image processing. Baltimore, MD, USAGoogle Scholar
  30. Xu R, Hu X, Wunsch DCI (2004) Inference of genetic regulatory networks from time series gene expression data. Neural networks, 2004. Proceedings. 2004 IEEE international joint conference, vol 2. Budapest, Hungary, pp 1215–1220Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alina Sîrbu
    • 1
    Email author
  • Heather J. Ruskin
    • 1
  • Martin Crane
    • 1
  1. 1.Centre for Scientific Computing and Complex Systems Modelling, School of Computing, Dublin City UniversityDublin 9Ireland

Personalised recommendations