Theory in Biosciences

, Volume 130, Issue 1, pp 55–69 | Cite as

A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks

  • Svetoslav Nikolov
  • Julio Vera
  • Ulf Schmitz
  • Olaf WolkenhauerEmail author
Original Paper


In this paper we present and discuss a model-based approach to link miRNA translational control with cell signalling networks. MicroRNAs are small regulatory RNAs that are able to regulate the activity and the stability of specific messenger RNA and have been implicated in tumour progression due to their ability to translationally regulate critical oncogenes and tumour suppressors. In our approach, data on protein–protein interactions and miRNA regulation, obtained from bioinformatics databases, are integrated with quantitative experimental data using mathematical modelling. Predictive computational simulations and qualitative (bifurcation) analyses of those mathematical models are employed to further support the investigation of such multifactorial networks in the context of cancer progression. We illustrate our approach with the C-Myc/E2F signalling network, involved in the progression of several tumour subtypes, including colorectal cancer.


miRNA Cancer networks Systems biology Bioinformatics Translational regulation 



This work was supported by DAAD-Bulgarian National Science Fund project DO02-23/05.3.2009. J.V. is funded by the German Federal Ministry of Education and Research (BMBF) as part of the project CALSYS-FORSYS under contract 0315264 ( O.W. was supported by the Helmholtz Foundation as part of the Systems Biology Network.


  1. Aguda B, Clarke B (1987) Bistability in chemical reaction networks. Theory and application to the peroxidase-oxidase reaction. J Chem Phys 87(6):3461–3470CrossRefGoogle Scholar
  2. Aguda B, Kim Y, Piper-Hunter M, Friedman A, Marsh C (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105(50):19678–19683CrossRefPubMedGoogle Scholar
  3. Akao Y, Nakagawa Y, Naoe T (2006) Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906CrossRefPubMedGoogle Scholar
  4. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195–1203CrossRefPubMedGoogle Scholar
  5. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355CrossRefPubMedGoogle Scholar
  6. Andronov A, Witt A, Chaikin S (1966) Theory of oscillations. Addison-Wesley, Reading, MAGoogle Scholar
  7. Arino O, Hbib M, AitDads E (2006) Delay differential equations and applications. Springer, New YorkCrossRefGoogle Scholar
  8. Ashburner M, Ball C, Blake J, Botstein D, Bulter H et al (2000) Gene ontology: tool fort he unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29CrossRefPubMedGoogle Scholar
  9. Bader G, Hogue C (2000) BIND-a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16:465–477CrossRefPubMedGoogle Scholar
  10. Balsa-Canto E, Alonso AA, Banga JR (2008) Computational procedures for optimal experimental design in biological systems. IET Syst Biol 2(4):163–172CrossRefPubMedGoogle Scholar
  11. Banga JR, Balsa-Canto E (2008) Parameter estimation and optimal experimental design. Essays Biochem 45:195–209CrossRefPubMedGoogle Scholar
  12. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37(Database issue):D5–D15Google Scholar
  13. Bautin N (1984) Behavior of dynamical systems near the boundary of stability. Moscow, NaukaGoogle Scholar
  14. Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38(Suppl):S2–S7 ReviewCrossRefPubMedGoogle Scholar
  15. Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M (2006) Target hub proteins serve as master regulators of development in yeast. Genes Dev 20(4):435–448CrossRefPubMedGoogle Scholar
  16. Bueno M, Peres de Castro I, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7(20):3143–3148CrossRefPubMedGoogle Scholar
  17. Cai X, Hagedorn C, Cullen B (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966CrossRefPubMedGoogle Scholar
  18. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033CrossRefPubMedGoogle Scholar
  19. Chendrimada T, Finn K, Ji X, Baillat D, Gregory R et al (2007) MicroRNA silencing through RISC recruitment of elF6. Nature 447:823–828CrossRefPubMedGoogle Scholar
  20. Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, Carvalho B, Meijer GA (2009) MiR-17–92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 101(4):707–714CrossRefPubMedGoogle Scholar
  21. Fall C, Marland E, Wagner J, Tyson J (2002) Computational cell biology. Springer, New YorkGoogle Scholar
  22. Glass L, Mackey M (1988) From clocks to chaos. The rhythms of life. Princeton University Press, Princeton, NJGoogle Scholar
  23. Goldbeter A (2002) Computational approach to cellular rhythms. Nature 420:238–245CrossRefPubMedGoogle Scholar
  24. Goldbeter A, Gonze D, Houart G, Leloup J, Halloy J, Dupont G (2001) From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos 11(1):247–260CrossRefPubMedGoogle Scholar
  25. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3(10):1871–1878CrossRefPubMedGoogle Scholar
  26. Ho JS, Ma W, Mao DY, Benchimol S (2005) p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25(17):7423–7431CrossRefPubMedGoogle Scholar
  27. Hoffman B, Liebermann DA (2008) Apoptotic signalling by c-MYC. Oncogene 27(50):6462–6472CrossRefPubMedGoogle Scholar
  28. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36:664CrossRefPubMedGoogle Scholar
  29. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMedGoogle Scholar
  30. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–D416Google Scholar
  31. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363CrossRefPubMedGoogle Scholar
  32. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647CrossRefPubMedGoogle Scholar
  33. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H (2006) IntAct—open source resource for molecular interaction data. Nucleic Acids Res. doi: 10.1093/nar/gkl958
  34. Khan Q, Greenhagh D (1999) Hopf bifurcation in epidemic models with a time delay in vaccination. IMA J Math Appl Med Biol 16:133–142CrossRefGoogle Scholar
  35. Khanin R, Vinciotti V (2008) Computational modelling of post-transcriptional gene regulation by microRNAs. J Comput Biol 15(3):305–316CrossRefPubMedGoogle Scholar
  36. Kholodenko B (2006) Cell signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176CrossRefPubMedGoogle Scholar
  37. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational–experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178CrossRefPubMedGoogle Scholar
  38. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837CrossRefPubMedGoogle Scholar
  39. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–W454Google Scholar
  40. Lai X, Nikolov S, Wolkenhauer O, Vera J (2009) A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis. Comput Biol Chem 33(4):312–324CrossRefPubMedGoogle Scholar
  41. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414CrossRefPubMedGoogle Scholar
  42. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  43. Lee E, Baek M, Gusev Y, Brackett D, Nuovo G, Schmittgen T (2008) Systematic evolution of microRNA processing patterns in tissues, cell lines, and tumours. RNA 14(1):35–42CrossRefPubMedGoogle Scholar
  44. Lewis B, Burge C, Bartel D (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  45. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefPubMedGoogle Scholar
  46. Marsden J, McCracken M (1976) The Hopf bifurcation and its applications. Springer-Verlag, New YorkGoogle Scholar
  47. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306(5696):704–708CrossRefPubMedGoogle Scholar
  48. Nikolov S (2008) Stability and bifurcation behavior of genetic regulatory systems with two delays. C R Acad Bulg Sci 61(5):585–594Google Scholar
  49. Nikolov S, Vera J, Kotev V, Wolkenhauer O, Petrov V (2008) Dynamic properties of a delayed protein cross talk model. BioSystems 91:51–68CrossRefPubMedGoogle Scholar
  50. Nikolov S, Lai X, Wolkenhauer O, Vera J (2009a) Time delay and Epo dose modulation in a multilevel model for erythropoiesis. Bioautomation 12:53–69Google Scholar
  51. Nikolov S, Petrov V, Kotev V, Georgiev G (2009b) Mathematical description of time delays in pathways crosstalk. In: Handbook of research on systems biology applications in medicine. Douphin County, Idea Group Inc., Chapter 3:27–73Google Scholar
  52. Nikolov S, Vera J, Rath O, Kolch W, Wolkenhauer O (2009c) Role of inhibitory proteins as modulators of oscillations in NfkB signalling. IET Syst Biol 3(2):59–76CrossRefPubMedGoogle Scholar
  53. Nikolov S, Lai X, Liebal UW, Wolkenhauer O, Vera J (2010) Integration of sensitivity and bifurcation analysis to detect critical processes in a model combining signalling and cell population dynamics. Int J Syst Sci 41(1):81–105CrossRefGoogle Scholar
  54. Nissan T, Parker R (2008) Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14:1480–1491CrossRefPubMedGoogle Scholar
  55. O’Dannell K, Wentzel E, Zeller K, Dang C, Mendell J (2005) cMyc regulated microRNAs modulate E2F1 expression. Nature 435:839–843CrossRefGoogle Scholar
  56. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R, Rayner T, Sharma A, William E, Sarkans U, Brazma A (2007) ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35(Database issue):D747–D750Google Scholar
  57. Peri S, Navarro J, Amanchy R, Kristiansen T, Jonnalagadda C et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371CrossRefPubMedGoogle Scholar
  58. Petersen C, Bordelean M, Pelletier J, Sharp P (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542CrossRefPubMedGoogle Scholar
  59. Petrocca F, Visone R, Onelli M, Shah M, Nicoloso M et al (2008) E2F1 regulated microRNAs impair TGFβ dependent cell cycle arrest and apoptosis in gastric cancer. Cancer Cell 13(3):272–286CrossRefPubMedGoogle Scholar
  60. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–1929CrossRefPubMedGoogle Scholar
  61. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumour suppressor miR-145. Proc Natl Acad Sci USA 106(9):3207–3212CrossRefPubMedGoogle Scholar
  62. Scherrer K, Jost J (2007a) The gene and the genon concept: a functional and information-theoretic analysis. Mol Syst Biol 3:87CrossRefPubMedGoogle Scholar
  63. Scherrer K, Jost J (2007b) Gene and genon concept: coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory Biosci 126(2–3):65–113CrossRefPubMedGoogle Scholar
  64. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18(5):549–557CrossRefPubMedGoogle Scholar
  65. Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37(4):918–925CrossRefPubMedGoogle Scholar
  66. Sensse A, Eiswirth M (2005) Feedback loops for chaos in activator-inhibitor systems. J Chem Phys 122:044516CrossRefGoogle Scholar
  67. Shahi P, Loukianiouk S, Bohne-Lang A, Kenzelmann M, Küffer S, Maertens S, Eils R, Gröne HJ, Gretz N, Brors B (2006) Argonaute—a database for gene regulation by mammalian microRNAs. Nucleic Acids Res 34(Database issue):D115–D118Google Scholar
  68. Shilnikov L, Shilnikov A, Turaev D, Chua L (2001) Methods of qualitative theory in nonlinear dynamics. Part II. World Scientific, SingaporeCrossRefGoogle Scholar
  69. Sorribas A, Hernández-Bermejo B, Vilaprinyo E, Alves R (2007) Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng 97(5):1259–1277CrossRefPubMedGoogle Scholar
  70. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756CrossRefPubMedGoogle Scholar
  71. Tyson JJ, Albert R, Goldbeter A, Ruoff P, Sible J (2008) Biological switches and clocks. J R Soc Interface 5(Suppl 1):S1–S8CrossRefPubMedGoogle Scholar
  72. Vera J, Wolkenhauer O (2009) A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol 90:399–415CrossRefGoogle Scholar
  73. Vera J, Balsa-Canto E, Wellstead P, Banga JR, Wolkenhauer O (2007) Power-law models of signal transduction pathways. Cell Signal 19:1531–1541CrossRefPubMedGoogle Scholar
  74. Vera J, Bachmann J, Pfeifer A, Becker V, Hormiga J, Torres N et al (2008) A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst Biol 2:38 (ISI: 4; Pubmed). doi: 10.1186/1752-0509-2-38
  75. Wakiyama M, Takimoto K, Ohara O, Yokoyama K (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21:1857–1862CrossRefPubMedGoogle Scholar
  76. Watanabe Y, Tonita M, Kanai A (2007) Computational methods for microRNA target prediction. Methods Enzymol 427:65–86CrossRefPubMedGoogle Scholar
  77. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin 14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Svetoslav Nikolov
    • 1
  • Julio Vera
    • 2
  • Ulf Schmitz
    • 2
  • Olaf Wolkenhauer
    • 2
    Email author
  1. 1.Institute of MechanicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Systems Biology & BioinformaticsUniversity of RostockRostockGermany

Personalised recommendations