Theory in Biosciences

, Volume 129, Issue 1, pp 15–23 | Cite as

In the shadow of Darwin: Anton de Bary’s origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds

Original Paper


In his Origin of Species (John Murray, London, 1859), Charles Darwin described the theory of descent with modification by means of natural selection and postulated that all life may have evolved from one or a few simple kinds of organisms. However, Darwin’s concept of evolutionary change is entirely based on observations of populations of animals and plants. He briefly mentioned ‘lower algae’, but ignored amoebae, bacteria and other micro-organisms. In 1859, Anton de Bary, the founder of mycology and plant pathology, published a seminal paper on the biology and taxonomy of the plasmodial slime molds (myxomycetes). These heterotrophic protists are known primarily as a large composite mass, the plasmodium, in which single nuclei are suspended in a common ‘naked’ cytoplasm that is surrounded by a plasma membrane. Here we summarize the contents of de Bary’s 1859 publication and highlight the significance of this scientific classic with respect to the establishment of the kingdom Protoctista (protists such as amoebae), the development of the protoplasmic theory of the cell, the introduction of the concept of symbiosis and the rejection of the dogma of spontaneous generation. We describe the life cycle of the myxomycetes, present new observations on the myxamoebae and propose a higher-order phylogeny based on elongation factor-1 alpha gene sequences. Our results document the congruence between the morphology-based taxonomy of the myxomycetes and molecular data. In addition, we show that free-living amoebae, common protists in the soil, are among the closest living relatives of the myxomycetes and conclude that de Bary’s ‘Amoeba-hypothesis’ on the evolutionary origin of the plasmodial slime molds may have been correct.


Darwin de Bary Evolution Myxomycetes Phylogenetic tree Spontaneous generation 



We thank Mr. H. Müller for the provision of samples and helpful comments on the manuscript. Mr. H. Rühling (Abteilung Zellbiologie, Universität Kassel) provided assistance during our work at the scanning electron microscope.


  1. Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci USA 94:12007–12012CrossRefPubMedGoogle Scholar
  2. Baldauf SL, Roger AJ, Wenk-Seifert I, Doolittle WF (2000) A Kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977CrossRefPubMedGoogle Scholar
  3. Carroll SB (2006) The making of the fittest. DNA and the ultimate forensic record of evolution. W W Norton & Company, New YorkGoogle Scholar
  4. Clark J (2000) The species problem in the myxomycetes. Stapfia 73:39–54Google Scholar
  5. Clark J (2004) Reproductive systems and taxonomy in the myxomycetes. Syst Geogr Plants 74:209–216Google Scholar
  6. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  7. Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, LondonGoogle Scholar
  8. De Bary A (1859) Die Mycetozoen. Ein Beitrag zur Kenntnis der niedersten Thiere. Z Wiss Zool 10:88–175Google Scholar
  9. De Bary A (1864) Die Mycetozoen (Schleimpilze). Ein Beitrag zur Kenntnis der niedersten Organismen. Wilhelm Engelmann, LeipzigGoogle Scholar
  10. De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Wilhelm Engelmann, LeipzigGoogle Scholar
  11. De Bary A (1884) Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bacterien. Wilhelm Engelmann, LeipzigGoogle Scholar
  12. Drews G (2001) The developmental biology of fungi—a new concept introduced by Anton de Bary. Adv Appl Microbiol 48:213–227CrossRefPubMedGoogle Scholar
  13. Everhart SE, Keller HW (2008) Life history strategies of corticolous myxomycetes: the life cycle, plasmodial types, fruiting bodies, and taxonomic orders. Fungal Divers 29:1–16Google Scholar
  14. Fiore-Donno A-M, Berney C, Pawlowski J, Baldauf SL (2005) Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor-1 α and small subunit rRNA gene sequences. J Eukaryot Microbiol 52:1–10CrossRefGoogle Scholar
  15. Fiore-Donno A-M, Meyer M, Baldauf SL, Pawlowski J (2008) Evolution of dark-spored myxomycetes (slime molds): molecules versus morphology. Mol Phylogenet Evol 46:878–889CrossRefPubMedGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98Google Scholar
  17. Horsfall JG, Wilhelm S (1982) Heinrich Anton de Bary: Nach einhundertfünfzig Jahren. Annu Rev Phytopathol 20:27–32CrossRefGoogle Scholar
  18. Hossfeld U (2009) Ernst Haeckel. Orange Press, Freiburg i. Br.Google Scholar
  19. Kahn NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595CrossRefGoogle Scholar
  20. Kutschera U (2002) Bacterial colonization of sunflower cotyledons during seed germination. J Appl Bot 76:96–98Google Scholar
  21. Kutschera U (2009) Symbiogenesis, natural selection, and the dynamic Earth. Theory Biosci 128:191–203CrossRefPubMedGoogle Scholar
  22. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276CrossRefPubMedGoogle Scholar
  23. Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24CrossRefPubMedGoogle Scholar
  24. Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 127:277–289CrossRefPubMedGoogle Scholar
  25. Martin GW, Alexopoulos CJ (1969) The myxomycetes. University of Iowa Press, IowaGoogle Scholar
  26. Mayr E (2004) What makes biology unique? Considerations on the autonomy of a scientific discipline. Cambride University Press, CambridgeCrossRefGoogle Scholar
  27. McLaughlin P (2005) Spontaneous versus equivocal generation in early modern science. Ann Hist Phil Biol 10:79–88Google Scholar
  28. Neubert H, Nowotny W, Baumann K (1993) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, vol 1 Ceratiomyxiales, Echinosteliales, Liceales und Trichiales. Verlag Karlheinz Baumann, GomaringenGoogle Scholar
  29. Neubert H, Nowotny W, Baumann K (1995) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, vol 2 Physarales. Verlag Karlheinz Baumann, GomaringenGoogle Scholar
  30. Neubert H, Nowotny W, Baumann K (2000) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, vol 3 Stemonitiales. Verlag Karlheinz Baumann, GomaringenGoogle Scholar
  31. Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, ChicagoGoogle Scholar
  32. Schnittler M, Mitchell DW (2000) Species diversity in myxomycetes based on the morphological species concept—a critical examination. Stapfia 73:55–61Google Scholar
  33. Schulze M (1863) Das Protoplasma der Rhizopoden und der Pflanzenzellen. Ein Beitrag zur Theorie der Zelle. Wilhelm Engelmann, LeipzigGoogle Scholar
  34. Sparrow FK (1978) Professor Anton de Bary. Mycologia 70:222–252CrossRefGoogle Scholar
  35. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefPubMedGoogle Scholar
  36. Winzeler EA (2008) Malaria research in the post-genomic era. Nature 455:751–756CrossRefPubMedGoogle Scholar
  37. Zettler LA, Sogin ML, Caron DA (1997) Phylogenetic relationships between the Acantharea and the Polycystinea: a molecular perspective on Haeckel’s Radiolaria. Proc Natl Acad Sci USA 94:11411–11416CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of KasselKasselGermany

Personalised recommendations