Theory in Biosciences

, 128:191 | Cite as

Symbiogenesis, natural selection, and the dynamic Earth

  • U. Kutschera
Original Paper


One century ago, Constantin S. Mereschkowsky introduced the symbiogenesis theory for the origin of chloroplasts from ancient cyanobacteria which was later supplemented by Ivan E. Wallin’s proposal that mitochondria evolved from once free-living bacteria. Today, this Mereschkowsky–Wallin principle of symbiogenesis, which is also known as the serial primary endosymbiosis theory, explains the evolutionary origin of eukaryotic cells and hence the emergence of all eukaryotes (protists, fungi, animals and plants). In 1858, the concept of natural selection was described independently by Charles Darwin and Alfred R. Wallace. In the same year, Antonio Snider-Pellegrini proposed the idea of shifting continents, which was later expanded by Alfred Wegener, who published his theory of continental drift eight decades ago. Today, directional selection is accepted as the major cause of adaptive evolution within natural populations of micro- and macro-organisms and the theory of the dynamic Earth (plate tectonics) is well supported. In this article, I combine the processes and principles of symbiogenesis, natural selection and the dynamic Earth and propose an integrative ‘synade-model’ of macroevolution which takes into account organisms from all five Kingdoms of life.


Darwin Dynamic Earth Macroevolution Natural selection Symbiogenesis Synade-model 



I thank Prof. J. Jost (MPI Mathematics in the Sciences, Leipzig, Germany) for helpful comments on an earlier version of the manuscript and the Alexander von Humboldt-Stiftung (Bonn, Germany) for financial support (AvH-fellowship 2007/Stanford, California, USA).


  1. Abel O (1906) Fossile Flugfische. Jb Geol Reichsanstalt 56:1–93Google Scholar
  2. Altwegg R, Reyer H-U (2003) Patterns of natural selection on size at metamorphosis in waterfrogs. Evolution 57:872–882PubMedGoogle Scholar
  3. Bao H, Lyons JR, Zhou C (2008) Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453:504–506CrossRefPubMedGoogle Scholar
  4. Barnes RSK (ed) (1998) The diversity of living organisms. Blackwell Science, OxfordGoogle Scholar
  5. Baumiller TK, Gahn FJ (2004) Testing predator-driven evolution with Paleozoic Crinoid arm regeneration. Science 305:1453–1455CrossRefPubMedGoogle Scholar
  6. Beccaloni GW, Smith VS (2008) Celebrations for Darwin downplay Wallace’s role. Nature 451:1050CrossRefPubMedGoogle Scholar
  7. Bell G (1997) Selection: the mechanism of evolution. Chapman & Hall, New YorkGoogle Scholar
  8. Benton MJ (2003) When life nearly died: the greatest mass extinction of all time. Thames & Hudson, LondonGoogle Scholar
  9. Benton MJ (2005) Vertebrate palaeontology, 3rd edn. Blackwell Science, OxfordGoogle Scholar
  10. Benton MJ (2009) The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728–732CrossRefPubMedGoogle Scholar
  11. Berner D, Adams DC, Grandchamp A-C, Hendry AP (2008) Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. J Evol Biol 21:1653–1665CrossRefPubMedGoogle Scholar
  12. Borda E, Oceguera-Figueroa A, Siddall ME (2008) On the classification, evolution and biogeography of terrestrial haemadipsoid leeches (Hirudinida: Arhynchobdellida: Hirudiniformes). Mol Phylogenet Evol 46:142–154CrossRefPubMedGoogle Scholar
  13. Bös W, Kunz R (2002) Geologische Sehenswürdigkeiten im Wolfhager Land. Landkreis Kassel—Untere Naturschutzbehörde, WolfhagenGoogle Scholar
  14. Botha J, Smith RMH (2007) Lystrosaurus species composition across the Permo-Triassic boundary in the Karoo Basin of South Africa. Lethaia 40:125–137Google Scholar
  15. Bowman JL, Floyd SK, Sakakibara K (2007) Green genes—comparative genomics of the green branch of life. Cell 129:229–234CrossRefPubMedGoogle Scholar
  16. Bralower TJ (2008) Volcanic cause of catastrophe. Nature 454:285–287CrossRefPubMedGoogle Scholar
  17. Cameron EZ, du Toit JT (2007) Winning by neck: tall giraffes avoid competing with shorter browsers. Am Nat 169:130–139CrossRefPubMedGoogle Scholar
  18. Carroll RL (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32CrossRefPubMedGoogle Scholar
  19. Carroll SB (2006) The making of the fittest. DNA and the ultimate forensic record of evolution. Norton, New YorkGoogle Scholar
  20. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182CrossRefPubMedGoogle Scholar
  21. Cutler A (2003) The seashell on the mountaintop. Dutton, New YorkGoogle Scholar
  22. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  23. Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, LondonGoogle Scholar
  24. Darwin C, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. I. Extract from an unpublished work on species, II. Abstract of a letter from C. Darwin, Esq., to Prof. Asa Gray. III. On the tendency of varieties to depart indefinitely from the original type. J Proc Linn Soc Lond 3:45–62Google Scholar
  25. Dobzhansky T (1955) Evolution, genetics, and man. Wiley, New YorkGoogle Scholar
  26. Eldredge N (1989) Macroevolutionary dynamics. Species, niches and adaptive peaks. McGraw-Hill, New YorkGoogle Scholar
  27. Endler JA (1986) Natural selection in the wild. Princeton University Press, PrincetonGoogle Scholar
  28. Falkowski PG, Isozaki Y (2008) The story of O2. Science 322:540–542CrossRefPubMedGoogle Scholar
  29. Fischer WW (2008) Life before the rise of oxygen. Nature 455:1051–1052CrossRefPubMedGoogle Scholar
  30. Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  31. Geus A, Höxtermann E (2007) Evolution durch Kooperation und Integration. Zur Entstehung der Endosymbiosetheorie in der Zellbiologie. Basilisken-Presse, MarburgGoogle Scholar
  32. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  33. Gradstein FM, Ogg JG, Smith AG (eds) (2004) A geologic time scale 2004. Cambridge University Press, CambridgeGoogle Scholar
  34. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711CrossRefPubMedGoogle Scholar
  35. Gregory TR (2008) Evolution as fact, theory and path. Evo Edu Outreach 1:46–52CrossRefGoogle Scholar
  36. Guo J (2008) Fire and life. Nature 454:930–932CrossRefPubMedGoogle Scholar
  37. Haeckel E (1877) Anthropogenie oder Entwicklungsgeschichte des Menschen. W. Engelmann, LeipzigGoogle Scholar
  38. Haffer J (2007) Ornithologie, evolution, and philosophy. The life and science of Ernst Mayr 1904–2005. Springer, BerlinGoogle Scholar
  39. Hendry AP (2005) The power of natural selection. Nature 433:694–695CrossRefPubMedGoogle Scholar
  40. Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hardean plate boundary interactions. Nature 456:493–496CrossRefPubMedGoogle Scholar
  41. Hunt G, Bell MA, Travis MP (2008) Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700–710CrossRefPubMedGoogle Scholar
  42. Irving E (2005) The role of latitude in mobilism debates. Proc Natl Acad Sci USA 102:1821–1828CrossRefPubMedGoogle Scholar
  43. Jablonski D (2008) Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62:715–739CrossRefPubMedGoogle Scholar
  44. Jost J (2003) On the notion of fitness, or: the selfish ancestor. Theory Biosci 121:331–350Google Scholar
  45. Kennedy M, Mrofka D, van der Borch C (2008) Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453:642–645CrossRefPubMedGoogle Scholar
  46. Klingsolver JG, Pfennig D (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572CrossRefGoogle Scholar
  47. Knoll AH (2003) Life on a young planet. The first three billion years of evolution on earth. Princeton University Press, PrincetonGoogle Scholar
  48. Kring DA (2007) The Chixulub impact event and its environmental consequences at the K/T boundary. Paleogeogr Paleoclimatol Paleoecol 255:4–21CrossRefGoogle Scholar
  49. Kutschera U (2003) A comparative analysis of the Darwin–Wallace papers and the development of the concept of natural selection. Theory Biosci 122:343–359Google Scholar
  50. Kutschera U (2005) Predator-driven macroevolution in flyingfishes inferred from behavioural studies: historical controversies and a hypothesis. Ann Hist Philos Biol 10:59–77Google Scholar
  51. Kutschera U (2007) Paleobiology: the origin and evolution of a scientific discipline. Trends Ecol Evol 22:172–173CrossRefPubMedGoogle Scholar
  52. Kutschera U (2008a) Darwin–Wallace principle of natural selection. Nature 453:27CrossRefPubMedGoogle Scholar
  53. Kutschera U (2008b) From Darwinism to evolutionary biology. Science 321:1157–1158CrossRefPubMedGoogle Scholar
  54. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276CrossRefPubMedGoogle Scholar
  55. Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24CrossRefPubMedGoogle Scholar
  56. Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 127:277–289CrossRefPubMedGoogle Scholar
  57. Kutschera U, Wirtz P (2001) The evolution of parental care in freshwater leeches. Theory Biosci 120:115–137Google Scholar
  58. Kutschera U, Pfeiffer I, Ebermann E (2007) The European land leech: biology and DNA-based taxonomy of a rare species that is threatened by climate warming. Naturwissenschaften 94:957–974Google Scholar
  59. LeGrand HE (1988) Drifting continents and shifting theories. Cambridge University Press, CambridgeGoogle Scholar
  60. Levin HL (2003) The Earth through time, 7th edn. Wiley, HobokenGoogle Scholar
  61. Levit GS, Simunek M, Hoßfeld U (2008) Psychoontogeny and psychophylogeny: Berhard Rensch’s (1900–1990) selectionist turn through the prism of panpsychistic identism. Theory Biosci 127:297–322CrossRefPubMedGoogle Scholar
  62. Majerus MEN (2009) Industrial melanism in the peppered moth, Biston betularia: an excellent teaching example of Darwinian evolution in action. Evo Edu Outreach 2:63–74CrossRefGoogle Scholar
  63. Majerus MEN, Mundy NI (2003) Mammalian melanism: natural selection in black and white. Trends Genet 19:585–588CrossRefPubMedGoogle Scholar
  64. Margulis L (1993) Symbiosis in cell evolution. Microbial communities in the Archean and Proterozoic eons, 2nd edn. W.H. Freeman, New YorkGoogle Scholar
  65. Margulis L (1996) Archaeal–eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 93:1071–1076CrossRefPubMedGoogle Scholar
  66. Margulis L, Schwartz KV (1998) Five kingdoms. An illustrated guide to the phyla of life on earth, 3rd edn. W.H. Freeman, New YorkGoogle Scholar
  67. Mayr E (1984) The growth of biological thought. Diversity, evolution and inheritance. Harvard University Press, CambridgeGoogle Scholar
  68. Mayr E (2001) What evolution is. Basic Books, New YorkGoogle Scholar
  69. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604, 689–691Google Scholar
  70. Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30:278–303, 321–347, 353–367Google Scholar
  71. Nei M (2007) The new mutation theory of phenotypic evolution. Proc Natl Acad Sci USA 104:12235–12242CrossRefPubMedGoogle Scholar
  72. Nield T (2007) Supercontinent. Ten billion years in the life of our planet. Harvard University Press, CambridgeGoogle Scholar
  73. Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, ChicagoGoogle Scholar
  74. Okasha S (2006) Evolution and the levels of selection. Oxford University Press, New YorkCrossRefGoogle Scholar
  75. Pearson A (2008) Who lives in the sea floor? Nature 454:952–953CrossRefPubMedGoogle Scholar
  76. Pielou EC (1979) Biogeography. Wiley, New YorkGoogle Scholar
  77. Probst E (1986) Deutschland in der Urzeit. Von der Entstehung des Lebens bis zum Ende der Eiszeit. C. Bertelsmann Verlag, MünchenGoogle Scholar
  78. Retallack GJ, Greaver T, Jahren AH (2007) Return to Coalsack Bluff and the Permian-Triassic boundary in Antarctica. Global Planet Change 55:90–108CrossRefGoogle Scholar
  79. Reyes-Prieto A, Weber APM, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168CrossRefPubMedGoogle Scholar
  80. Sapp J, Carrapico F, Zolotonosov M (2002) Symbiogenesis: the hidden face of Constantin Merezhkowsky. Hist Philos Life Sci 24:413–440CrossRefPubMedGoogle Scholar
  81. Scheiner SM, Willig MR (2008) A general theory of ecology. Theor Ecol 1:21–28CrossRefGoogle Scholar
  82. Schopf WJ (2006) Fossil evidence of Archaean life. Phil Trans R Soc B 361:869–885CrossRefPubMedGoogle Scholar
  83. Seeley RH (1996) Intense natural selection caused by a rapid morphological transition in a living marine snail. Proc Natl Acad Sci USA 83:6897–6901CrossRefGoogle Scholar
  84. Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147CrossRefPubMedGoogle Scholar
  85. Shermer M (2002) In Darwin’s shadow: the life and science of Alfred Russel Wallace. Oxford University Press, OxfordGoogle Scholar
  86. Snider-Pellegrini A (1858) La Création et ses mystères dévoilés. Franck et Dentu, ParisGoogle Scholar
  87. Steinberger B (2008) Reconstructing earth history in three dimensions. Science 322:866–868CrossRefPubMedGoogle Scholar
  88. Storey W, Duncan R, Swisher CC (2007) Paleocene–Eocene thermal maximum and the opening of the northeast atlantic. Science 316:587–589CrossRefPubMedGoogle Scholar
  89. Thurnheer S, Reyer H-U (2000) Spatial distribution and survival rate of waterfrog tadpoles in relation to biotic and abiotic factors: a field experiment. Amphib Reptil 22:21–32CrossRefGoogle Scholar
  90. Van Bocxlaer B, van Damme D, Feibel CS (2008) Gradual versus punctuated equilibrium evolution in the Turkana basin mollusks: evolutionary events or biological invasions? Evolution 62:511–520CrossRefPubMedGoogle Scholar
  91. Wallace AR (1889) Darwinism. An exposition of the theory of natural selection with some of its applications. MacMillan, New YorkGoogle Scholar
  92. Wallin IE (1927) Symbionticism and the origin of species. Bailliere, Tindall & Cox, LondonGoogle Scholar
  93. Wegener A (1929) Die Entstehung der Kontinente und Ozeane. 4. Auflage. F. Vieweg & Sohn, BraunschweigGoogle Scholar
  94. Westall F (2009) Life on an anaerobic planet. Science 323:471–472CrossRefPubMedGoogle Scholar
  95. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefPubMedGoogle Scholar
  96. Wildman DE, Uddin M, Opazo JC, Liu G, Levort V, Guindon S, Gascuel O, Grossman LI, Romero R, Goodman M (2007) Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci USA 104:14395–14400CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of KasselKasselGermany

Personalised recommendations