Advertisement

Theory in Biosciences

, Volume 127, Issue 3, pp 277–289 | Cite as

Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form

  • U. KutscheraEmail author
  • K. J. Niklas
Original Paper

Abstract

Seventy-five years ago, the geneticist Richard Goldschmidt hypothesized that single mutations affecting development could result in major phenotypic changes in a single generation to produce unique organisms within animal populations that he called “hopeful monsters”. Three decades ago, Sarah P. Gibbs proposed that photosynthetic unicellular micro-organisms like euglenoids and dinoflagellates are the products of a process now called “secondary endosymbiosis” (i.e., the evolution of a chloroplast surrounded by three or four membranes resulting from the incorporation of a eukaryotic alga by a eukaryotic heterotrophic host cell). In this article, we explore the evidence for Goldschmidt’s “hopeful monster” concept and expand the scope of this theory to include the macroevolutionary emergence of organisms like Euglena and Chlorarachnion from secondary endosymbiotic events. We argue that a Neo-Goldschmidtian perspective leads to the conclusion that cell chimeras such as euglenids and dinoflagellates, which are important groups of phytoplankton in freshwater and marine ecosystems, should be interpreted as “successful monsters”. In addition, we argue that Charles Darwin had euglenoids (infusoria) in mind when he speculated on the “primordial intermediate form”, although his Proto-Euglena-hypothesis for the origin of the last common ancestor of all forms of life is no longer acceptable.

Keywords

Darwin Endosymbiosis Hopeful monster theory Macroevolution 

Notes

Acknowledgments

This article is dedicated to Prof. Sarah P. Gibbs, who discovered the principle of secondary endosymbiosis 30 years ago. The cooperation of the authors is supported by the Alexander von Humboldt-Stiftung (AvH), Bonn (Germany).

References

  1. Archibald JM (2005) Jumping genes and shrinking genomes–probing the evolution of eukaryotic photosynthesis with genomics. IUBMB Life 57:539–547PubMedCrossRefGoogle Scholar
  2. Archibald JM (2006) Algal genomics: exploring the imprint of endosymbiosis. Curr Biol 16:R1033–R1035PubMedCrossRefGoogle Scholar
  3. Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. Bioessays 29:302–402CrossRefGoogle Scholar
  4. Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet 39:95–199PubMedCrossRefGoogle Scholar
  5. Akam M (1998) Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 42:445–451PubMedGoogle Scholar
  6. Albert VA, Oppenheimer DG, Lindqvis C (2002) Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci 7:297–301PubMedCrossRefGoogle Scholar
  7. Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764PubMedGoogle Scholar
  8. Bachmann K (1983) Evolutionary genetics and the genetic control of morphogenesis in flowering plants. Evol Biol 16:157–208Google Scholar
  9. Bateman RM, DiMichele WA (2002) Generation and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Taylor & Francis, London, pp 109–159Google Scholar
  10. Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60CrossRefGoogle Scholar
  11. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52PubMedCrossRefGoogle Scholar
  12. Braun EL, Phillips N (2008) Phylogenomics and secondary plastids: a look back and a look ahead. J Phycol 44:2–6CrossRefGoogle Scholar
  13. Brunelle SA, Hazard ES, Sotka EE, Van Dolah FM (2007) Characterization of a Dinoflagellate crypochrome blue-light receptor with a possible role in circadian control of the cell cycle. J Phycol 43:509–518CrossRefGoogle Scholar
  14. Butterfield NJ (2007) Macroevolution and macroecology through deep time. Palaeontology 50:41–55CrossRefGoogle Scholar
  15. Carroll RL (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32PubMedCrossRefGoogle Scholar
  16. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109PubMedCrossRefGoogle Scholar
  17. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182PubMedCrossRefGoogle Scholar
  18. Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Phil Trans R Soc B 361:969–1006PubMedCrossRefGoogle Scholar
  19. Carpenter R, Coen ES (1990) Floral homeotic mutations proposed by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493PubMedCrossRefGoogle Scholar
  20. Cowen R (2000) History of life, 3rd edn. Blackwell, OxfordGoogle Scholar
  21. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161PubMedCrossRefGoogle Scholar
  22. Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, LondonGoogle Scholar
  23. Dietrich MR (2000) From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution and genetics. Am Zool 40:738–747CrossRefGoogle Scholar
  24. Dietrich MR (2003) Richard Goldschmidt: hopeful monsters and other ‘heresies’. Nature Rev Genet 4:68–74CrossRefGoogle Scholar
  25. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257PubMedCrossRefGoogle Scholar
  26. Ehrenberg CG (1838) Die Infusionsthierchen als Vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leopold Voss, LeipzigGoogle Scholar
  27. Eldredge N (1989) Macroevolutionary dynamics. Species, niches, and adaptive peaks. McGraw-Hill, New YorkGoogle Scholar
  28. Eldredge N (2008) The early evolution of punctuated equilibria. Evo Edu Outreach 1:107–113CrossRefGoogle Scholar
  29. Embly TM, Martin W (2006) Eukaryotic evolution: changes and challenges. Nature 440:623–630CrossRefGoogle Scholar
  30. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  31. Falkowski PG, Knoll AH (eds) (2007) Evolution of primary producers in the sea. Elsevier, AmsterdamGoogle Scholar
  32. Fröhlich MW (2003) An evolutionary scenario for the origin of flowers. Nature Rev Genet 4:559–566CrossRefGoogle Scholar
  33. Galen C (1996) Rates of floral evolution: Adaptation to bumblebee pollination in an alpine wildflower Polemonium viscosum. Evolution 50:120–125CrossRefGoogle Scholar
  34. Garcia-Bellido A (1983) Comparative anatomy of cuticular patterns in the genus Drosophila. In: Godwin BC, Holder N, Wylie CC (eds) Development and evolution. Cambridge University Press, Cambridge, pp 227–255Google Scholar
  35. Geitler L (1930) Ein grünes Filarplasmodium und andere neue Protisten. Arch Protistenkunde 69:615–637Google Scholar
  36. Geus A, Höxtermann E (Hg) (2007) Evolution durch Kooperation und Integration. Zur Entstehung der Endosymbiosetheorie in der Zellbiologie. Basilisken-Presse, MarburgGoogle Scholar
  37. Gibbs SP (1978) The chloroplast of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889CrossRefGoogle Scholar
  38. Gibbs SP (2006) Looking at life: from binocular to the electron microscope. Annu Rev Plant Biol 57:1–17PubMedCrossRefGoogle Scholar
  39. Gilbert SF, Levit GS (2007) The national roots of evo-devo. Theory Biosci 126:115–116PubMedCrossRefGoogle Scholar
  40. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachinophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA 103:9566–9671PubMedCrossRefGoogle Scholar
  41. Goldschmidt R (1933) Some aspects of evolution. Science 78:539–547PubMedCrossRefGoogle Scholar
  42. Goldschmidt R (1940) The material basis of evolution. Yale University Press, New HavenGoogle Scholar
  43. Gottlieb LD (1984) Genetic and morphological evolution in plants. Am Nat 123:689–709CrossRefGoogle Scholar
  44. Gould SJ (1977) The return of hopeful monsters. Nat Hist 86:24–30Google Scholar
  45. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  46. Graham LE, Wilcox LM (2000) Algae. Prentice-Hall, New JerseyGoogle Scholar
  47. Grzebyk D, Schofield O, Vetriani C, Falkowski PG (2003) The mesozoic radiation of eukaryotic algae: the portable plastid hypothesis. J Phycol 39:259–267Google Scholar
  48. Hackett DJ, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534CrossRefGoogle Scholar
  49. Haeckel E (1904) Kunstformen der Natur. Bibliographisches Institut Leipzig, WienGoogle Scholar
  50. Hilu KW (1983) The role of single-gene mutations in the evolution of flowering plants. Evol Biol 16:97–128Google Scholar
  51. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051PubMedCrossRefGoogle Scholar
  52. Jackson RC, Dimas CT (1981) Experimental evidence for systematic placement of the Haplopappus phyllocephalus complex. Syst Bot 6:8–14CrossRefGoogle Scholar
  53. Junker T (2004) Die zweite Darwinsche Revolution. Geschichte des Synthetischen Darwinismus in Deutschland 1924 bis 1950. Basilisken-Presse, MarburgGoogle Scholar
  54. Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493CrossRefGoogle Scholar
  55. Kimura M (1962) On the probability of fixation of mutant genes in populations. Genetics 47:713–719PubMedGoogle Scholar
  56. Knoll AH (2003) Life on a young planet: The first billion years of evolution on earth. Princeton University Press, PrincetonGoogle Scholar
  57. Koorneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74:265–272Google Scholar
  58. Kutschera U (2002) Bacterial colonization of sunflower cotyledons during seed germination. J Appl Bot 76:96–98Google Scholar
  59. Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78Google Scholar
  60. Kutschera U (2008) Evolutionsbiologie. 3. Auflage. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  61. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276PubMedCrossRefGoogle Scholar
  62. Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24PubMedCrossRefGoogle Scholar
  63. Kutschera U, Niklas KJ (2006) Photosynthesis research on yellowtops: macroevolution in progress. Theory Biosci 125:81–92PubMedGoogle Scholar
  64. Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409PubMedCrossRefGoogle Scholar
  65. Leander BS (2004) Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol 12: 251–258PubMedCrossRefGoogle Scholar
  66. Leander BS, Esson HJ, Breglia SA (2007) Macroevolution of complex cytoskeletal systems in euglenids. Bioessays 29:987–1000PubMedCrossRefGoogle Scholar
  67. Leitch AR, Leitch IJ (2007) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483CrossRefGoogle Scholar
  68. Maier U-G, Douglas SE, Cavalier-Smith T (2000) The nucleomorph genomes of cryptophytes and chlorarachinophytes. Protist 151:103–109PubMedCrossRefGoogle Scholar
  69. Margulis L, Schwartz KV (1998) Five kingdoms. An illustrated guide to the phyla of life on earth, 3rd edn. WH Freeman, New YorkGoogle Scholar
  70. Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539PubMedCrossRefGoogle Scholar
  71. Martin W (2003) Gene transfer from organelles to the nucleus: Frequent and in big chunks. Proc Natl Acad Sci USA 100:8612–8614PubMedCrossRefGoogle Scholar
  72. Martin-Gonzalez A, Wierzchos JM, Gutierrez JC, Alonso J, Ascaso C (2008) Morphological stasis of protists in lower Cretaceous amber. Protist 159:251–257PubMedCrossRefGoogle Scholar
  73. Martel CM, Flynn KJ (2008) Morphological controls on cannibalism in a planktonic marine phagotroph. Protist 159:41–51PubMedCrossRefGoogle Scholar
  74. Mayr E, Provine,WB (eds) (1980) The evolutionary synthesis. Harvard University Press, CambridgeGoogle Scholar
  75. McFadden G (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959CrossRefGoogle Scholar
  76. McFadden G, Gilson P (1995) Something borrowed, something green: Lateral transfer of chloroplasts by secondary endosymbiosis. Trends Ecol Evol 10:12–17CrossRefGoogle Scholar
  77. Merezhkowsky C (1905) Über Nature und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralblatt 25: 593–604, 689–691Google Scholar
  78. Merezhkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol Centralblatt 30: 278–288, 289–303, 321–347, 353–367Google Scholar
  79. Moreira D, Philippe H (2001) Sure facts and open questions about the origin and evolution of photosynthetic plastids. Res Microbiol 152:771–787PubMedCrossRefGoogle Scholar
  80. Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, ChicagoGoogle Scholar
  81. Niklas KJ (2000) The evolution of plant body plans–a biomechanical perspective. Ann Bot 85:411–438CrossRefGoogle Scholar
  82. Niklas KJ (2004) The walls that bind the tree of life. Bioscience 54:831–841CrossRefGoogle Scholar
  83. Nowack ECM, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by Eukaryotes. Curr Biol 18:410–418PubMedCrossRefGoogle Scholar
  84. Okamoto N, Inouye I (2005) A secondary symbiosis in progress? Science 310:287PubMedCrossRefGoogle Scholar
  85. Reif W-E, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91Google Scholar
  86. Rudall PJ, Bateman R (2003) Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci 8:76–92PubMedCrossRefGoogle Scholar
  87. Scherp P, Grotha R, Kutschera U (2001) Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants. Plant Cell Rep 20:143–149CrossRefGoogle Scholar
  88. Singh BB, Jha AN (1978) Abnormal differentiation of floral parts in a mutant strain of soybean. J Hered 69:143–144Google Scholar
  89. Sitte P (1989) Phylogenetische Aspekte der Zellevolution. Biol Rundschau 28:1–18Google Scholar
  90. Simons AM (2002) The continuity of microevolution and macroevolution. J Evol Biol 15:688–701CrossRefGoogle Scholar
  91. Streble H, Krauter D (1973) Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süßwassers. 4. Auflage. Frankh’sche Verlageshandlung, StuttgartGoogle Scholar
  92. Surek B, Melkonian M (1986) A cryptic cytostome is present in Euglena. Protoplasma 133:39–49CrossRefGoogle Scholar
  93. Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, Kataoka H, Nozaki H (2007) Origins of the secondary plastids of Euglenomorpha and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol 43:1302–1309CrossRefGoogle Scholar
  94. Theißen G (2006) The proper place of hopeful monsters in evolutionary biology. Theory Biosci 124:349–369PubMedCrossRefGoogle Scholar
  95. Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennett M, Brosnan S (2006) Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis Gen. nov. (Euglenophyta). J Phycol 42:731–740CrossRefGoogle Scholar
  96. Wallin IE (1927) Symbionticism and the origin of species. Bailliere, Tindall & Cox, LondonGoogle Scholar
  97. Wolken JJ (1967) Euglena. An experimental organism for biochemical and biophysical studies, 2nd edn. Meredith Publishing, New YorkGoogle Scholar
  98. Wright S (1982) The shifting balance theory and macroevolution. Annu Rev Genet 16:1–19PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of KasselKasselGermany
  2. 2.Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations