Theory in Biosciences

, Volume 126, Issue 1, pp 35–42 | Cite as

The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis

  • Marleen Perseke
  • Thomas Hankeln
  • Bettina Weich
  • Guido Fritzsch
  • Peter F. Stadler
  • Olle Israelsson
  • Detlef Bernhard
  • Martin Schlegel
Original Paper

Abstract

The phylogenetic position of Xenoturbella bocki has been a matter of controversy since its description in 1949. We sequenced a second complete mitochondrial genome of this species and performed phylogenetic analyses based on the amino acid sequences of all 13 mitochondrial protein-coding genes and on its gene order. Our results confirm the deuterostome relationship of Xenoturbella. However, in contrast to a recently published study (Bourlat et al. in Nature 444:85–88, 2006), our data analysis suggests a more basal branching of Xenoturbella within the deuterostomes, rather than a sister-group relationship to the Ambulacraria (Hemichordata and Echinodermata).

Keywords

Xenoturbella Phylogeny Mitochondrial genome Basal deuterostomes 

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105PubMedCrossRefGoogle Scholar
  2. Abascal F, Zardoya R, Posada D (2006) GenDecoder: genetic code prediction for metazoan mitochondria. Nucleic Acids Res 34:389–393CrossRefGoogle Scholar
  3. Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468PubMedGoogle Scholar
  4. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  5. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780PubMedCrossRefGoogle Scholar
  6. Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DT, Telford MJ (2003) Xenoturbella is a deuterostome that eats molluscs. Nature 424:925–928PubMedCrossRefGoogle Scholar
  7. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum xenoturbellida. Nature 444:85–88PubMedCrossRefGoogle Scholar
  8. Castresana J, Feldmaier-Fuchs G, Pä äbo S (1998a). Codon reassignment and amino acid composition in hemichordate mitochondria. Proc Natl Acad Sci USA 95:3703–3707PubMedCrossRefGoogle Scholar
  9. Castresana J, Feldmaier-Fuchs G, Yokobori S, Satoh N, Pääbo S, (1998b). The mitochondrial genome of the hemichordata Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 150:1115–1123PubMedGoogle Scholar
  10. Ehlers U (1991) Comparative morphology of statocysts in the Platyhelminthes and the Xenoturbellida. Hydrobiologia 227:263–271CrossRefGoogle Scholar
  11. Ehlers U, Sopott-Ehlers B (1997a) Xenoturbella bocki: organisation and phylogenetic position as sister taxon of the bilateria. Verh Dtsch Zool Ges 90:168Google Scholar
  12. Ehlers U, Sopott-Ehlers B (1997b) Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the bilateria. Zoomorphology 117:71–79CrossRefGoogle Scholar
  13. Fitch DH (2005) (ed) Introduction to nematode evolution and ecology. In: The C. elegans research community. WormBook. doi: /10.1895/wormbook.1.19.1 (31 August, 2005)Google Scholar
  14. Franzén Å, Afzelius BA (1987) The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zool Scr 16:9–17CrossRefGoogle Scholar
  15. Fritzsch G, Schlegel M, Stadler P (2006) Alignments of mitochondrial genome arrangements: applications to metazoan phylogeny. J Theor Biol 240:511–520PubMedCrossRefGoogle Scholar
  16. Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura K, Watanabe K (1987) Unusual genetic codes and a novel gene structure for tRNA(AGYSer) in starfish mitochondrial DNA. Gene 56:219–230PubMedCrossRefGoogle Scholar
  17. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188CrossRefGoogle Scholar
  18. Israelsson O (1997) ... and molluscan embryogenesis. Nature 390:32CrossRefGoogle Scholar
  19. Israelsson O (1999) New light on the enigmatic Xenoturbella (phylum uncertain): ontogeny and phylogeny. Proc R Soc Lond Ser B 266:835–841CrossRefGoogle Scholar
  20. Israelsson O, Budd GE (2005) Eggs and embryos in Xenoturbella (phylum uncertain) are not ingested prey. Dev Genes Evol 215:358–363PubMedCrossRefGoogle Scholar
  21. Jägersten G (1959) Further remarks on the early phylogeny of metazoa. Zoologiska Bidrag 33:79–108Google Scholar
  22. Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109PubMedCrossRefGoogle Scholar
  23. Lartillot N, Philippe H (2006) Computing Bayes factors using thermodynamic integration. Syst Biol 55:195–207PubMedCrossRefGoogle Scholar
  24. Lavrov DV, Brown WM (2001) Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of coelomate metazoans. Genetics 157:621–637PubMedGoogle Scholar
  25. Lavrov DV, Lang BF (2005) Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Syst Biol 54:651–659PubMedCrossRefGoogle Scholar
  26. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCrossRefGoogle Scholar
  27. Lundin K (1998) The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the acoelomorpha (Platyhelminthes). Zool Scr 27:263–270CrossRefGoogle Scholar
  28. Nohara M, Nishida M, Miya M, Nishikawa T (2005) Evolution of the mitochondrial genome in cephalochordata as inferred from complete nucleotide sequences from two Epigonichthys species. J Mol Biol 60:526–537Google Scholar
  29. Noren M, Jondelius U (1997) Xenoturbella’s molluscan relatives. Nature 390:31–32CrossRefGoogle Scholar
  30. Notredame C, Higgins D, Heringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  31. Pedersen KJ, Pedersen LR (1986) Fine structural observations on the extracellular matrix (ECM) of Xenoturbella bocki Westblad, 1949. Acta Zool 67:103–113Google Scholar
  32. Pedersen KJ, Pedersen LR (1988) Ultrastructural observations on the epidermis of Xenoturbella bocki Westblad, 1949; with a discussion of epidermal cytoplasmic filament systems of invertebrates. Acta Zool 69:231–246CrossRefGoogle Scholar
  33. Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (bilateria inc. sed.). Zoomorphology 120:107–118CrossRefGoogle Scholar
  34. Reisinger E (1960) Was ist Xenoturbella? Z Wiss Zool 164:188–198Google Scholar
  35. Rieger RM, Tyler S, Smith III JPS, Rieger G (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates. Volume 3: Platyhelminthes and Nemertinea. Wiley-Liss, New York, pp 7–140Google Scholar
  36. Rohde K, Watson N, Cannon LRG (1988) Ultrastructure of epidermal cilia of Pseudactinoposthia sp. (Platyhelminthes, Acoela): implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. J Submicrosc Cytol Pathol 20:759–767Google Scholar
  37. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  38. Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñà J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci USA 99:11246–11251PubMedCrossRefGoogle Scholar
  39. Ruiz-Trillo I, Riutort M, Fourcade HM, Bagunñà J, Boore JL (2004) Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol Phylogenet Evol 33:321–332PubMedCrossRefGoogle Scholar
  40. Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci USA 89:6575–6579PubMedCrossRefGoogle Scholar
  41. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002)TREEPUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  42. Stach T, Dupont S, Isrealson O, Fauville G, Nakano H, Kånneby T, horndyke M (2005) Nerve cells of Xenoturbella bocki (phylum uncertain) and Harrimania kupfferi (enteropneusta) are positively immunoreactive to antibodies raised against echinoderm neuropeptides. J Mar Biol Assoc UK 85:1519–1524CrossRefGoogle Scholar
  43. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4.0b10. Sinauer Associates, Sunderland (Handbook and Software)Google Scholar
  44. Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood DT (2003) Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc Biol Sci 270:1077–1083PubMedCrossRefGoogle Scholar
  45. Westblad E (1949) Xenoturbella bocki n.g., n.sp., a peculiar, primitive Turbellarian type. Ark Zool 1:3–29Google Scholar
  46. Yokobori SI, Watanabe Y, Oshima T (2003) Mitochondrial genome of Ciona savignyi (Urochordata, Ascidiacea, Enterogona): comparison of gene arrangement and tRNA genes with Halocynthia roretzi mitochondrial genome. J Mol Evol 57:574–587PubMedCrossRefGoogle Scholar
  47. Yokobori S, Oshima T, Wada H (2005) Complete nucleotide sequence of the mitochondrial genome of Doliolum nationalis with implications for evolution of Urochordates. Mol Phylogenet Evol 34:273–283PubMedCrossRefGoogle Scholar
  48. Zrzavy J, Mihulka S, Kepka P, Bezdek A, Tietz D (1998) Phylogeny of the metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marleen Perseke
    • 1
  • Thomas Hankeln
    • 2
  • Bettina Weich
    • 2
  • Guido Fritzsch
    • 3
  • Peter F. Stadler
    • 3
    • 4
  • Olle Israelsson
    • 5
  • Detlef Bernhard
    • 1
  • Martin Schlegel
    • 1
  1. 1.Institut für ZoologieMolekulare Evolution und Systematik der Tiere Universität LeipzigLeipzigGermany
  2. 2.Institut für MolekulargenetikJohannes Gutenberg Universität MainzMainzGermany
  3. 3.Interdisziplinäres Zentrum für BioinformatikUniversität LeipzigLeipzigGermany
  4. 4.Lehrstuhl für Bioinformatik, Institut für InformatikUniversität LeipzigLeipzigGermany
  5. 5.Museum of EvolutionUppsala UniversityUppsalaSweden

Personalised recommendations