Theory in Biosciences

, Volume 126, Issue 1, pp 9–14 | Cite as

Evolution of the vertebrate Y RNA cluster

  • Axel Mosig
  • Meng Guofeng
  • Bärbel M. R. Stadler
  • Peter F. Stadler
Original Paper


Relatively little is known about the evolutionary histories of most classes of non-protein coding RNAs. Here we consider Y RNAs, a relatively rarely studied group of related pol-III transcripts. A single cluster of functional genes is preserved throughout tetrapod evolution, which however exhibits clade-specific tandem duplications, gene-losses, and rearrangements.


Y RNA Non-coding RNAs Evolution Gene duplications 


  1. Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C (2005) Evolutionary patterns of non-coding RNAs. Theory Biosci 123:301–369CrossRefGoogle Scholar
  2. Chen X, Quinn AM, Wolin SL (2000) Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet resistance. Genes Dev 14:777–782PubMedGoogle Scholar
  3. Christov CP, Gardiner TJ, Szüts D, Krude T (2006) Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol 26:6993–7004PubMedCrossRefGoogle Scholar
  4. Farris AD, O’Brien CA, Harley JB (1995) Y3 is the most conserved small RNA component of Ro ribonucleoprotein complexes in vertebrate species. Gene 154:193–198PubMedCrossRefGoogle Scholar
  5. Farris AD, Gross JK, Hanas JS, B HJ (1996) Genes for murine Y1 and Y3 Ro RNAs have class 3 RNA polymerase III promoter structures and are unlinked on mouse chromosome 6. Gene 174:35–42PubMedCrossRefGoogle Scholar
  6. Farris AD, Koelsch G, Pruijn GJ, van Venrooij WJ, Harley JB (1999) Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. Nucleic Acids Res 27:1070–8PubMedCrossRefGoogle Scholar
  7. Felsenstein J (1989) Phylip—phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  8. Green CD, Long KS, Shi H, Wolin SL (1998) Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 4:750–765PubMedCrossRefGoogle Scholar
  9. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, Students of Bioinformatics Computer Labs 2004 and 2005 (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25Google Scholar
  10. van Horn DJ, Eisenberg D, O’Brien CA, Wolin SL (1995) Caenorhabditis elegans embryos contain only one major species of Ro RNP. RNA 1:293–303PubMedGoogle Scholar
  11. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  12. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670PubMedCrossRefGoogle Scholar
  13. Lerner MR, Boyle JA, Hardin JA, Steitz JA (1981) Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 211:400–402PubMedCrossRefGoogle Scholar
  14. Maraia RJ, Sasaki-Tozawa N, Driscoll CT, Green ED, Darlington GJ (1994) The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res 22:3045–3052PubMedCrossRefGoogle Scholar
  15. Maraia R, Sakulich AL, Brinkmann E, Green ED (1996) Gene encoding human Ro-associated autoantigen Y5 RNA. Nucleic Acids Res 24:3552–3559PubMedCrossRefGoogle Scholar
  16. Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218PubMedCrossRefGoogle Scholar
  17. Mosig A, Sameith K, Stadler PF (2005) fragrep: efficient search for fragmented patterns in genomic sequences. Genomics Proteomics Bioinformatics 4:56–60CrossRefGoogle Scholar
  18. Nawrocki EP, Eddy SR (2007) Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007. epub: doi:10.1371/journal.pcbi.0030056.eorGoogle Scholar
  19. O’Brien CA, Margelot K, Wolin SL (1993) Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc Natl Acad Sci USA 90:7250–7254PubMedCrossRefGoogle Scholar
  20. Perreault J, Noël JF, Brière F, Cousineau B, Lucier JF, Perreault JP, Boire G (2005) Retropeudogenes derived from human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res 33:2032–2041PubMedCrossRefGoogle Scholar
  21. Perreault J, Perreault JP, Boire G (2007) The Ro associated Y RNAs in metazoans: evolution and diversification. Mol Biol Evol under reviewGoogle Scholar
  22. Prochnik SE, Rokhsar DS, Aboobaker AA (2007) Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 217:73–77PubMedCrossRefGoogle Scholar
  23. Prujin GJM, Wingens PAETM, Peters SLM, Thijsen JPH, van Venrooij WJ (1993) Ro RNP associated Y RNAs are highly conserved among mammals. Biochim Biophys Acta 1216:395–401Google Scholar
  24. Rutjes SA, Lund E, van der Heijden A, Grimm C, van Venrooij WJ, Pruijn GJM (2001) Identification of a novel cis-acting RNA element involved in nuclear export of hY RNAs. RNA 7:741–752PubMedCrossRefGoogle Scholar
  25. Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol 306B:575–588CrossRefGoogle Scholar
  26. Simons FH, Rutjes SA, van Venrooij WJ, Pruijn GJ (1996) The interactions with Ro60 and La differentially affect nuclear export of hY1 RNA. RNA 2:264–273PubMedGoogle Scholar
  27. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335PubMedCrossRefGoogle Scholar
  28. Teunissen SWM, Kruithof MJM, Farris AD, Harley JB, van Venrooij WJ, Pruijn GJM (2000) Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. Nucleic Acids Res 28:610–619PubMedCrossRefGoogle Scholar
  29. Thompson JD, Higgs DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  30. Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2(12):e205PubMedCrossRefGoogle Scholar
  31. Zemann A, op de Bekke A, Kiefmann M, Brosius J, Schmitz J (2006) Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res 34:2676–2685PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Axel Mosig
    • 1
    • 2
  • Meng Guofeng
    • 1
  • Bärbel M. R. Stadler
    • 2
  • Peter F. Stadler
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of Combinatorics and Geometry (DCG)CAS/MPG Partner Institute for Computational Biology (PICB)ShanghaiChina
  2. 2.Max Planck Insitute for Mathematics in the SciencesLeipzigGermany
  3. 3.Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for BioinformaticsUniversity of LeipzigLeipzigGermany
  4. 4.RNomics GroupFraunhofer Institut für Zelltherapie und ImmunologieLeipzigGermany
  5. 5.Department of Theoretical ChemistryUniversity of ViennaViennaAustria
  6. 6.Santa Fe InstituteSanta FeUSA

Personalised recommendations