Theory in Biosciences

, Volume 120, Issue 3–4, pp 207–224 | Cite as

Swarms of particle agents with harmonic interactions

  • Werner EbelingEmail author
  • Frank Schweitzer


Agent-based modeling is a powerful methodology to describe the occurence of complex behavior in biological systems. The interaction of a large number of individuals (agents) may for example lead to the emergence of new forms of collective motion. In this paper, we investigate a particle-based approach to the coherent motion of a swarm with parabolic (i. e. harmonic) interactions between the agents. It is based on generalized Langevin equations for the particle agents, which take into account (i) energetic conditions for active motion, (ii) linear attractive forces between each two agents. The complex collective motion observed can be explained as the result of these different influences: the active motion of the agents, which is driven by the energy-take up, would eventually lead to a spatial dispersion of the swarm, while the mutual interaction of the agents results in a tendency of spatial concentration. In addition to particle-based computer simulations, we also provide a mathematical framework for investigating the collective dynamics.

Key words

active motion collective behavior Brownian particles energy supply swarming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astumian, R. D. (1997) Thermodynamics and kinetics of a brownian motor. Science 276: 917–922.PubMedCrossRefGoogle Scholar
  2. Ben-Jacob, E.; Schochet, O.; Tenenbaum, A.; Cohen, I.; Czirók, A. and Vicsek, T. (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368: 46–49.PubMedCrossRefGoogle Scholar
  3. Bonabeau, E.; Dorigo, M. and Théraulaz, G. (1999) Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity. New York: Oxford University Press.Google Scholar
  4. Bonabeau, E.; Dorigo, M. and Théraulaz, G. (2000) Inspiration for optimization from social insect behavior. Nature 406: 39–42.PubMedCrossRefGoogle Scholar
  5. Calenbuhr, V. and Deneubourg, J. L. (1990) A model for trail following in ants: individual and collective behaviour. In: Biological Motion (Alt, W. and Hoffmann, G., (eds.)). Springer, Berlin pp. 453–469.Google Scholar
  6. Czirok, A.; Barabasi, A. L. and Vicsek, T. (1999) Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Physical Review Letters 82 (1): 209–212.CrossRefGoogle Scholar
  7. Czirok, A.; Ben-Jacob, E.; Cohen, I. and Vicsek, T. (1996) Formation of complex bacterial colonies via self-generated vortices. Physical Review E 54 (2): 1791–1801.CrossRefGoogle Scholar
  8. Czirok, A. and Vicsek, T. (2000) Collective behavior of interacting self-propelled particles. Physica A 281: 17–29.CrossRefGoogle Scholar
  9. DeAngelis, D. L. and Gross, L. J. (eds.) (1992) Individual-based Models and Approaches in Ecology: Populations, Communities, and Ecosystems. New York: Chapman and Hall.Google Scholar
  10. Derenyi, I. and Vicsek, T. (1995) Cooperative transport of brownian particles. Physical Review Letters 75/3: 374–377.PubMedCrossRefGoogle Scholar
  11. Deutsch, A. (1999) Principles of morphogenetic motion: swarming and aggregation viewed as self-organization phenomena. J. Biosci. 24 (1): 115–120.CrossRefGoogle Scholar
  12. Deutsch, A. and Lawniczak, A. (1999) Probabilistic lattice models of collective motion and aggregation; from individual to collective dynamics. Mathematical Biosciences 156: 255–269.PubMedCrossRefGoogle Scholar
  13. Durrett, R. and Levin, S. A. (1994 a) The importance of being discrete (and spatial). Theoretical Population Biology 46: 363–394.CrossRefGoogle Scholar
  14. Durrett, R. and Levin, S. A. (1994 b) Stochastic spatial models: a user’s guide to ecological applications. Philosphical Transactions of the Royal Society of London B 343: 329–350.CrossRefGoogle Scholar
  15. Ebeling, W.; Schweitzer, F. and Tilch, B. (1999) Active brownian particies with energy depots modelling animal mobility. BioSystems 49: 17–29.PubMedCrossRefGoogle Scholar
  16. Edelstein-Keshet, L. (1994) Simple models for trail following behaviour: Trunk trails versus individual foragers. J. Math. Biol. 32: 303–328.CrossRefGoogle Scholar
  17. Edelstein-Keshet, L.; Watmough, J. and Ermentrout, G. B. (1995) Trail following in ants: individual properties determine population behaviour. Behav. Ecol Sociobiol 36: 119–133.CrossRefGoogle Scholar
  18. Erdmann, U.; Ebeling, W.; Schimansky-Geier, L. and Schweitzer, F. (2000) Brownian particles far from equilibrium. European Physical Journal B 15 (1): 105–113.CrossRefGoogle Scholar
  19. Feistel, R. and Ebeling, W. (1989) Evolution of Complex Systems. Self-Organization, Entropy and Development. Dordrecht: Kluwer.Google Scholar
  20. Flierl, G.; Grünbaum, D.; Levin, S. and Olson, D. (1999) From individuals to aggregations: the interplay between behavior and physics. Journal of Theoretical Biology 196: 397–454.PubMedCrossRefGoogle Scholar
  21. Franke, K. and Gruler, H. (1990) Galvanotaxis of human granulocytes: electric field jump studies. Europ. Biophys. J. 18: 335–346.Google Scholar
  22. Grünbaum, D. and Okubo, A. (1994) Modelling social animal aggregation. In: Frontiers in Theoretical Biology (Levin, S. A., (ed.)), vol. 100 of Lecture Notes in Biomathematics. New York: Springer.Google Scholar
  23. Hänggi, P. and Bartussek, R. (1996) Brownian rectifiers: How to convert brownian motion into directed transport. In: Nonlinear Physics of Complex Systems — Current Status and Future Trends (Parisi, J., Müller, S. C. and Zimmermann, W., (eds.)). Berlin: Springer, pp. 294–308.Google Scholar
  24. Helbing, D.; Schweitzer, F.; Keltsch, J. and Molnár, P. (1997) Active walker model for the formation of human and animal trail systems. Physical Review E 56/3: 2527–2539.CrossRefGoogle Scholar
  25. Helbing, D. and Vicsek, T. (1999) Optimal self-organization. New Journal of Physics 1: 13.1–13.17.CrossRefGoogle Scholar
  26. Klimontovich, Y. L. (1994) Nonlinear Brownian motion. Physics-Uspekhi 37 (8): 737–766.CrossRefGoogle Scholar
  27. Lam, L. (1995) Active walker models for complex systems. Chaos, Solitons & Fractals 6: 267–285.CrossRefGoogle Scholar
  28. Lam, L.; Veinott, M. C. and Pochy, R. (1995) Abnormal spatiotemporal growth. In: Spatio-Temporal Patterns in Nonequilibrium Complex Systems (Cladis, P. E. and Palffy-Muhoray, P., (eds.)). Reading, MA: Addison-Wesley, pp. 659–670.Google Scholar
  29. Mikhailov, A. and Zanette, D. H. (1999) Noise-induced breakdown of coherent collective motion in swarms. Physical Review E 60: 4571–4575.CrossRefGoogle Scholar
  30. Mikhailov, A. S. and Meinköhn, D. (1997) Self-motion in physico-chemical systems far from thermal equilibrium. In: Stochastic Dynamics (Schimansky-Geier, L. and Pöschel, T., (eds.)), vol. 484 of Lecture Notes in Physics. Berlin: Springer, pp. 334–345.Google Scholar
  31. Othmer, H. G. and Stevens, A. (1997) Aggregation, blowup and collapse: the abc’s of taxis in reinforced random walks. SIAM J. of Applied Mathematics 57/4: 1044–1081.CrossRefGoogle Scholar
  32. Pasteels, J. M. and Deneubourg, J. L. (eds.) (1987) From Individual To Collective Behavior in Social Insects, vol. 54 of Experientia Supplementum. Basel: Birkhäuser.Google Scholar
  33. Phipps, M. J. (1992) From local to global: The lesson of cellular automata. In: DeAngelis and Gross (1992), pp. 165–186.Google Scholar
  34. Rateitschak, K.; Klages, R. and Hoover, W. G. (2000) The Nosé-Hoover thermostated lorentz gas. Journal of Statistical Physics 101: 61–77.CrossRefGoogle Scholar
  35. Schienbein, M. and Gruler, H. (1993) Langevin equation, Fokker-Planck equation and cell migration. Bull. Mathem. Biology 55: 585–608.Google Scholar
  36. Schimansky-Geier, L.; Mieth, M.; Rosé, H. and Malchow, H. (1995) Structure formation by active brownian particles. Physics Letters A 207: 140–146.CrossRefGoogle Scholar
  37. Schimansky-Geier, L.; Schweitzer, F. and Mieth, M. (1997) Interactive structure formation with brownian particies. In: Self-Organization of Complex Structures: From Individual to Collective Dynamics (Schweitzer, F., (ed.)). London: Gordon and Breach, pp. 101–118.Google Scholar
  38. Schweitzer, F. (1997 a) Active brownian particles: Artificial agents in physics. In: Stochastic Dynamics (Schimansky-Geier, L. and Pöschel, T., (eds.)), vol. 484 of Lecture Notes in Physics. Berlin: Springer, pp. 358–371.Google Scholar
  39. Schweitzer, F. (ed.) (1997 b) Self-Organization of Complex Structures: From Individual to Collective Dynamics. Part 1: Evolution of Complexity and Evolutionary Optimization, Part 2: Biological and Ecological DynamcisSocio-Economic Processes, Urban Structure Formation and Traffic Dynamics. London: Gordon and Breach.Google Scholar
  40. Schweitzer, F. (1998) Modelling migration and economic agglomeration with active brownian particles. Advances in Complex Systems 1/1: 11–37.CrossRefGoogle Scholar
  41. Schweitzer, F. (2001) Brownian Agents and Active Particles. Springer Series in Synergetics. Berlin: Springer.Google Scholar
  42. Schweitzer, F.; Ebeling, W. and Tilch, B. (1998) Complex motion of brownian particles with energy depots. Physical Review Letters 80/23: 5044–5047.CrossRefGoogle Scholar
  43. Schweitzer, F.; Ebeling, W. and Tilch, B. (2001) Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics. Physical Review E 64 (2): 021110-1–021110-12.CrossRefGoogle Scholar
  44. Schweitzer, F. and Holyst, J. (2000) Modelling collective opinion formation by means of active brownian particles. European Physical Journal B 15 (4): 723–732.CrossRefGoogle Scholar
  45. Schweitzer, F.; Lao, K. and Family, F. (1997) Active random walkers simulate trunk trail formation by ants. BioSystems 41: 153–166.PubMedCrossRefGoogle Scholar
  46. Schweitzer, F. and Schimansky-Geier, L. (1996) Clustering of active walkers: Phase transitions from local interactions. In: Fluctuations and Order: The New Synthesis (Millonas, M., (ed.)). New York: Springer, pp. 293–305.Google Scholar
  47. Schweitzer, F.; Tilch, B. and Ebeling, W. (2000) Uphill motion of active brownian particles in piecewise linear potentials. European Physical Journal B 14 (1): 157–168.CrossRefGoogle Scholar
  48. Stevens, A. (1993) Aggregation of myxobacteria — a many particle system. In: Proc. First European Conference of Mathematics Applied to Biology and Medicine. Winnipeg: Wuerz Publishing, pp. 519–524.Google Scholar
  49. Stevens, A. (1995) Trail following and aggregation of myxobacteria. J. of Biol. Systems 3: 1059–1068.CrossRefGoogle Scholar
  50. Stevens, A. and Schweitzer, F. (1997) Aggregation induced by diffusing and nondiffusing media. In: Dynamics of Cell and Tissue Motion (Alt, W., Deutsch, A. and Dunn, G., (eds.)). Basel: Birkhäuser, pp. 183–192.Google Scholar
  51. Tilch, B.; Schweitzer, F. and Ebeling, W. (1999) Directed motion of brownian particles with internal energy depot. Physica A 273 (3–4): 294–314.CrossRefGoogle Scholar
  52. Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I. and Shochet, O. (1995) Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75: 1226–1229.PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Fischer Verlag 2001

Authors and Affiliations

  1. 1.Institute of PhysicsHumboldt University BerlinBerlinGermany
  2. 2.Real World Computing Partnership - Theoretical Foundation GMD Laboratory, Sankt AugustinGermany

Personalised recommendations