Advertisement

Applied Spatial Analysis and Policy

, Volume 12, Issue 4, pp 773–795 | Cite as

Geospatial Patterns and Drivers of Forest Fire Occurrence in Romania

  • Giorgos MallinisEmail author
  • Marius Petrila
  • Ioannis Mitsopoulos
  • Adrian Lorenţ
  • Ştefan Neagu
  • Bogdan Apostol
  • Vladimir Gancz
  • Ionel Popa
  • Johann Georg Goldammer
Article

Abstract

Timely and accurate spatial explicit forest fire risk assessment and mapping is essential for forest fire prevention and suppression preparedness, firefighting resources allocation, and efficient multi-level fire management policies. This paper describes the application and validation of an approach for forest fire risk analysis and fire risk zoning over Romania in order to identify areas at national scale where fires are most likely to occur and to threat existing values, resources and assets. A modeling approach based on logistic regression using historical fire observations has been developed based on environmental, socio-economic and demographic data availability at national scale. Ignitions were positively related to south-western slopes and occurred mostly in fuel type of xerophyte oaks as well as in areas of heterogeneous (natural/agricultural) landscape. In addition to the human variables the pattern of ignitions was also significantly related to slope and temperature of the driest quarter. The risk zones produced by the multiple logistic regression model presented satisfactory accuracy when compared with historical fire perimeters extracted from MODIS imagery. The findings of this study could be used by fire managers to implement prevention measures at forest areas with high fire risk. Furthermore, attention should be given to areas with high fire ignition probability, where the vulnerability and potential impact is higher.

Keywords

Forest fires Landscape management Risk Natural disasters GIS 

Notes

Acknowledgments

This work was supported by the Romanian Civil Protection Authority (Inspectoratul General pentru Situaţii de Urgenţă) within the framework of DISASTER RISK ASSESSMENT AT NATIONAL LEVEL (RO-RISK)” project. The MODIS data product was retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool. Special thanks are owed to two anonymous reviewers for their insightful advice and suggestions.

Funding

This work was supported by the Romanian Civil Protection Authority (Inspectoratul General pentru Situaţii de Urgenţă) within the framework of DISASTER RISK ASSESSMENT AT NATIONAL LEVEL (RO-RISK)” project.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Adam, I. (2007). Metodă de evaluare a riscului de incendiu în pădurile României. Analele ICAS, 50, 261–271.Google Scholar
  2. Adler, P., Raff, D., & Lauenroth, W. (2001). The effect of grazing on the spatial heterogeneity of vegetation. Oecologia, 128, 465–479.  https://doi.org/10.1007/s004420100737.CrossRefGoogle Scholar
  3. Alcasena, F. J., Salis, M., & Vega-García, C. (2016). A fire modeling approach to assess wildfire exposure of valued resources in Central Navarra, Spain. European Journal of Forest Research, 135(1), 87–107.  https://doi.org/10.1007/s10342-015-0919-6.CrossRefGoogle Scholar
  4. Amatulli, G., Peréz-Cabello, F., & de la Riva, J. (2007). Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecological Modelling, 200(3–4), 321–333.  https://doi.org/10.1016/j.ecolmodel.2006.08.001.CrossRefGoogle Scholar
  5. Armenteras, D., Gibbes, C., Vivacqua, C., Espinosa, J., Duleba, W., Goncalves, F., & Castro, C. (2016). Interactions between climate, land use and vegetation fire occurrences in El Salvador. Atmosphere, 7(2), 26 http://www.mdpi.com/2073-4433/7/2/26.CrossRefGoogle Scholar
  6. Bar Massada, A., Syphard, A. D., Stewart, S. I., & Radeloff, V. C. (2013). Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22(2), 174–183.  https://doi.org/10.1071/WF11178.CrossRefGoogle Scholar
  7. Barbu, I. (2008). Modelarea și prognoza riscului de apariţie a secetei și incendiilor în ecosistemele forestiere din România. Internal Scientific Report, Forest Research and Management Institute (ICAS), p. 91.Google Scholar
  8. Bond, W. J., & Keeley, J. E. (2005). Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20(7), 387–394.  https://doi.org/10.1016/j.tree.2005.04.025.CrossRefGoogle Scholar
  9. Bowman, D. M. J., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., et al. (2009). Fire in the earth system. Science, 324(5926), 481–484.  https://doi.org/10.1126/science.1163886.CrossRefGoogle Scholar
  10. Bowman, D. M. J., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., et al. (2011). The human dimension of fire regimes on earth. Journal of Biogeography, 38(12), 2223–2236.  https://doi.org/10.1111/j.1365-2699.2011.02595.x.CrossRefGoogle Scholar
  11. Calkin, D., Finney, M., Ager, A., Thompson, M., & Gebert, K. (2011). Progress towards and barriers to implementation of a risk framework for US federal wildland fire policy and decision making. Forest Policy and Economics, 13, 378–389.  https://doi.org/10.1016/j.forpol.2011.02.007.CrossRefGoogle Scholar
  12. Catry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18(8), 921–931.  https://doi.org/10.1071/WF07123.CrossRefGoogle Scholar
  13. Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., et al. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46–58.  https://doi.org/10.1016/j.ecolmodel.2008.11.017.CrossRefGoogle Scholar
  14. Chuvieco, E., Aguado, I., Jurdao, S., Pettinari, M. L., Yebra, M., Salas, J., et al. (2014). Integrating geospatial information into fire risk assessment. International Journal of Wildland Fire, 23(5), 606–619.  https://doi.org/10.1071/WF12052.
  15. Cochrane, M. A. (2013). Current fire regimes, impacts and the likely changes - V: Tropical South America. In J. G. Goldammer (Ed.), Vegetation fires and global change: Challenges for concerted international action. A white paper directed to the United Nations and International Organizations (pp. 101–114). Remagen-Oberwinter: Global fire monitoring center (GFMC). Kessel Publishing House.Google Scholar
  16. Cox, D. R., & Snell, E. J. (1989). Analysis of binary data, Second Edition. Chapman and Hall/CRC.Google Scholar
  17. Dimitrakopoulos, A. (2002). Mediterranean fuel models and potential fire behaviour in Greece. International Journal of Wildland Fire, 11(2), 127–130.  https://doi.org/10.1071/WF02018.CrossRefGoogle Scholar
  18. European Environment Agency (2017). Climate change adaptation and disaster risk reduction in Europe enhancing coherence of the knowledge base, policies and practices. Luxembourg: Publications Office of the European Union.Google Scholar
  19. Gâstescu, P., Pisota, I., Ciovicǎ, N., & Pǎtǎchie, L. (1975). The hydro-climatic particularities of Romania. Geoforum, 6(1), 29–37.  https://doi.org/10.1016/0016-7185(75)90009-3.CrossRefGoogle Scholar
  20. Goldammer, J. G. (2013). Beyond climate change: Wildland fires and human security in cultural landscapes in transition – Examples from temperate-boreal Eurasia. In J. G. Goldammer (Ed.), Vegetation Fires and Global Change: Challenges for Concerted International Action. A White Paper directed to the United Nations and International Organizations (pp. 285–311). Remagen-Oberwinter: Global fire monitoring center (GFMC). Kessel Publishing House.Google Scholar
  21. Goldammer, J. G., Stocks, B. J., Sukhinin, A. I., & Ponomarev, E. (2013). Current fire regimes, impacts and the likely changes - II: Forest fires in Russia – Past and current trends. In J. G. Goldammer (Ed.), Vegetation Fires and Global Change: Challenges for Concerted International Action. A White Paper directed to the United Nations and International Organizations (pp. 51–78). Remagen-Oberwinter: Global fire monitoring center (GFMC). Kessel Publishing House.Google Scholar
  22. González-Olabarria, J. R., Mola-Yudego, B., & Coll, L. (2015). Different factors for different causes: analysis of the spatial aggregations of fire ignitions in Catalonia (Spain). Risk Analysis, 35(7), 1197–1209.  https://doi.org/10.1111/risa.12339.CrossRefGoogle Scholar
  23. Gralewicz, N. J., Nelson, T. A., & Wulder, M. A. (2012). Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. International Journal of Wildland Fire, 21(3), 230–242.  https://doi.org/10.1071/WF10095.CrossRefGoogle Scholar
  24. Guo, F., Wang, G., Su, Z., Liang, H., Wang, W., Lin, F., & Liu, A. (2016). What drives forest fire in Fujian, China? Evidence from logistic regression and random forests. International Journal of Wildland Fire, 25(5), 505–519.  https://doi.org/10.1071/WF15121.CrossRefGoogle Scholar
  25. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.  https://doi.org/10.1148/radiology.143.1.7063747.CrossRefGoogle Scholar
  26. Hansen, M. C., Townshend, J. R. G., DeFries, R. S., & Carroll, M. (2005). Estimation of tree cover using MODIS data at global, continental and regional/local scales. International Journal of Remote Sensing, 26(19), 4359–4380.  https://doi.org/10.1080/01431160500113435.CrossRefGoogle Scholar
  27. Hardy, C. (2005). Wildland fire hazard and risk: roblems, definitions, and context. Forest Ecology and Management, 211, 73–82.  https://doi.org/10.1016/j.foreco.2005.01.029.CrossRefGoogle Scholar
  28. Hawbaker, T. J., Radeloff, V. C., Stewart, S. I., Hammer, R. B., Keuler, N. S., & Clayton, M. K. (2013). Human and biophysical influences on fire occurrence in the United States. Ecological Applications, 23(3), 565–582.  https://doi.org/10.1890/12-1816.1.CrossRefGoogle Scholar
  29. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.  https://doi.org/10.1002/joc.1276.CrossRefGoogle Scholar
  30. Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression, 2nd Ed. New York: John Wiley & Sons Inc.Google Scholar
  31. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213.  https://doi.org/10.1016/S0034-4257(02)00096-2.CrossRefGoogle Scholar
  32. Iliadis, L. S. (2005). A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environmental Modelling and Software, 20(5), 613–621.  https://doi.org/10.1016/j.envsoft.2004.03.006.CrossRefGoogle Scholar
  33. Kalabokidis, K., Xanthopoulos, G., Moore, P., Caballero, D., Kallos, G., Llorens, J., Roussou, O., & Vasilakos, C. (2012). Decision support system for forest fire protection in the Euro-Mediterranean region. European Journal of Forest Research, 131(3), 597–608.  https://doi.org/10.1007/s10342-011-0534-0.CrossRefGoogle Scholar
  34. Koutsias, N., Kalabokidis, K. D., & Allgöwer, B. (2004). Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods. Natural Resource Modeling, 17(4), 359–375.  https://doi.org/10.1111/j.1939-7445.2004.tb00141.x.CrossRefGoogle Scholar
  35. Koutsias, N., Balatsos, P., & Kalabokidis, K. (2014). Fire occurrence zones: Kernel density estimation of historical wildfire ignitions at the national level, Greece. Journal of Maps, 10(4), 630–639.  https://doi.org/10.1080/17445647.2014.908750.CrossRefGoogle Scholar
  36. Koutsias, N., Allgöwer, B., Kalabokidis, K., Mallinis, G., Balatsos, P., & Goldammer, J. G. (2016). Fire occurrence zoning from local to global scale in the European Mediterranean basin: implications for multi-scale fire management and policy. IForest, 9(APR2016), 195–204.  https://doi.org/10.3832/ifor1513-008.CrossRefGoogle Scholar
  37. Kovats, R. S., Valentini, R., Bouwer, L. M., Georgopoulou, E., Jacob, D., Martin, E., et al. (2014). Europe. In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (pp. 1267–1326). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  38. Levine, N. (2015). CrimeStat: A spatial statistics program for the analysis of crime incident locations (v 4.02). Washington, D.C.: Ned Levine & Associates, Houston, Texas, and the National Institute of Justice.Google Scholar
  39. Loboda, T. V. (2009). Modeling fire danger in data-poor regions: a case study from the Russian Far East. International Journal of Wildland Fire, 18(1), 19–35.  https://doi.org/10.1071/WF07094.CrossRefGoogle Scholar
  40. Loboda, T. V., & Csiszar, I. A. (2007). Assessing the risk of ignition in the Russian Far East within a modeling framework of fire threat. Ecological Applications, 17(3), 791–805.  https://doi.org/10.1890/05-1476.CrossRefGoogle Scholar
  41. Lung, T., Lavalle, C., Hiederer, R., Dosio, A., & Bouwer, L. M. (2013). A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Global Environmental Change, 23(2), 522–536.  https://doi.org/10.1016/j.gloenvcha.2012.11.009.CrossRefGoogle Scholar
  42. Magnussen, S., & Taylor, S. W. (2012). Prediction of daily lightning- and human-caused fires in British Columbia. International Journal of Wildland Fire, 21(4), 342–356.  https://doi.org/10.1071/WF11088.CrossRefGoogle Scholar
  43. Marques, S., Borges, J. G., Garcia-Gonzalo, J., Moreira, F., Carreiras, J. M. B., Oliveira, M. M., Cantarinha, A., Botequim, B., & Pereira, J. M. C. (2011). Characterization of wildfires in Portugal. European Journal of Forest Research, 130(5), 775–784.  https://doi.org/10.1007/s10342-010-0470-4.CrossRefGoogle Scholar
  44. Martínez, J., Vega-Garcia, C., & Chuvieco, E. (2009). Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), 1241–1252.  https://doi.org/10.1016/j.jenvman.2008.07.005.CrossRefGoogle Scholar
  45. Mitsopoulos, I., Mallinis, G., & Arianoutsou, M. (2015). Wildfire risk assessment in a typical Mediterranean wildland–urban Interface of Greece. Environmental Management, 55, 900–915.  https://doi.org/10.1007/s00267-014-0432-6.CrossRefGoogle Scholar
  46. Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G., & Long, D. G. (2001). Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire, 10(4), 329–342.  https://doi.org/10.1071/WF01032.CrossRefGoogle Scholar
  47. Mouillot, F., & Field, C. B. (2005). Fire history and the global carbon budget: a 1°× 1° fire history reconstruction for the 20th century. Global Change Biology, 11(3), 398–420.  https://doi.org/10.1111/j.1365-2486.2005.00920.x.CrossRefGoogle Scholar
  48. Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78, 691–692.  https://doi.org/10.1093/biomet/78.3.691.CrossRefGoogle Scholar
  49. Narayanaraj, G., & Wimberly, M. C. (2012). Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. Applied Geography, 32(2), 878–888.  https://doi.org/10.1016/j.apgeog.2011.09.004.CrossRefGoogle Scholar
  50. Nunes, A. N., Lourenço, L., & Meira, A. C. C. (2015). Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014). Science of the Total Environment, 573, 1190–1202.  https://doi.org/10.1016/j.scitotenv.2016.03.121.CrossRefGoogle Scholar
  51. Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. C. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random Forest. Forest Ecology and Management, 275, 117–129.  https://doi.org/10.1016/j.foreco.2012.03.003.CrossRefGoogle Scholar
  52. Oliveira, S., Pereira, J. M. C., San-Miguel-Ayanz, J., & Lourenço, L. (2014). Exploring the spatial patterns of fire density in southern Europe using geographically weighted regression. Applied Geography, 51, 143–157.  https://doi.org/10.1016/j.apgeog.2014.04.002.CrossRefGoogle Scholar
  53. Page, S., Rieley, J., Hoscilo, A., Spessa, A., & Weber, U. (2013). Current fire regimes, impacts and the likely changes - IV: Tropical Southeast Asia. In J. G. Goldammer (Ed.), Vegetation fires and global change: Challenges for concerted international action. A white paper directed to the United Nations and International Organizations (pp. 89–99). Remagen-Oberwinter: Global fire monitoring center (GFMC). Kessel Publishing House.Google Scholar
  54. Pan, J., Wang, W., & Li, J. (2016). Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China. Natural Hazards, 81(3), 1879–1899.  https://doi.org/10.1007/s11069-016-2160-0.CrossRefGoogle Scholar
  55. Parisien, M., & Moritz, M. (2009). Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79(1), 127–154.  https://doi.org/10.1890/07-1289.1.CrossRefGoogle Scholar
  56. Roberts, D. W., & Cooper, S. V. (1989). Concepts and techniques of vegetation mapping. In Land classifications based on vegetation: Applications for resource management. (pp. 90–96). Ogden, UT: USDA Forest Service GTR INT-257.Google Scholar
  57. Rodrigues, M., & de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 57, 192–201.  https://doi.org/10.1016/j.envsoft.2014.03.003.CrossRefGoogle Scholar
  58. Rodrigues, M., de la Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weightedlogistic regression. Applied Geography, 48, 52–63.  https://doi.org/10.1016/j.apgeog.2014.01.011.CrossRefGoogle Scholar
  59. Rodrigues, M., Jiménez, A., & de la Riva, J. (2016). Analysis of recent spatial--temporal evolution of human driving factors of wildfires in Spain. Natural Hazards, 84, 1–22.  https://doi.org/10.1007/s11069-016-2533-4.CrossRefGoogle Scholar
  60. Roy, D. P., Jin, Y., Lewis, P. E., & Justice, C. O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97(2), 137–162.  https://doi.org/10.1016/j.rse.2005.04.007.CrossRefGoogle Scholar
  61. Ruffault, J., Mouillot, F., & Peters, D. P. C. (2015). How a new fire-suppression policy can abruptly reshape the fire-weather relationship. Ecosphere, 6(10), art199.  https://doi.org/10.1890/ES15-00182.1.CrossRefGoogle Scholar
  62. San-Miguel-Ayanz, J., Durrant, T., Roberto, B., Libertà, G., Branco, A., de Rigo, D., et al. (2017). Forest fires in Europe, Middle East and North Africa 2016. EUR 28707 EN. Luxembourg: Publications Office of the European Union.Google Scholar
  63. Scott, J., & Burgan R. (2005). Standard fire behavior fuel models : A comprehensive set for use with Rothermel's surface fire spread model. U.S. Department of Agriculture, Forest Service, Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: Rocky Mountain Research Station, p 72.Google Scholar
  64. Scott, J., Thompson, M., & Calkin, D. (2013). A wildfire risk assessment framework for land and resource management. U.S. Department of Agriculture, Forest Service, Gen. Tech. Rep. RMRS-GTR-315. Fort Collins, CO: Rocky Mountain Research Station, p. 83.Google Scholar
  65. Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.  https://doi.org/10.1214/10-STS330.CrossRefGoogle Scholar
  66. Soto, M. C., Julio-Alvear, G., & Salinas, R. G. (2015). Chapter 4 - current wildfire risk status and forecast in Chile: Progress and future challenges A2 - Shroder, John F. In D. Paton (Ed.), Wildfire hazards, risks and disasters (pp. 59–75). Oxford: Elsevier.  https://doi.org/10.1016/B978-0-12-410434-1.00004-X.CrossRefGoogle Scholar
  67. Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101.CrossRefGoogle Scholar
  68. Swetnam, T. W., & Whitlock, C. (2013). Paleofire and climate history: Western America and global perspectives. In J. G. Goldammer (Ed.), Paleofire and Climate History: Western America and Global Perspectives (pp. 21–37). Remagen-Oberwinter: Global fire monitoring center (GFMC). Kessel Publishing House.Google Scholar
  69. Syphard, A. D., Radeloff, V. C., Keuler, N. S., Taylor, R. S., Hawbaker, T. J., Stewart, S. I., & Clayton, M. K. (2008). Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17(5), 602–613.  https://doi.org/10.1071/WF07087.CrossRefGoogle Scholar
  70. Taylor, S. W., Woolford, D. G., Dean, C. B., & Martell, D. L. (2013). Wildfire prediction to inform fire management: statistical science challenges. Statistical Science, 28(4), 586–615.  https://doi.org/10.1214/13-STS451.CrossRefGoogle Scholar
  71. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.  https://doi.org/10.1016/0034-4257(79)90013-0.CrossRefGoogle Scholar
  72. Turco, M., Llasat, M. C., von Hardenberg, J., & Provenzale, A. (2013). Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian Peninsula). Climatic Change, 116(3–4), 665–678.  https://doi.org/10.1007/s10584-012-0505-6.CrossRefGoogle Scholar
  73. Turner, D., Lewis, M., & Ostendorf, B. (2011). Spatial indicators of fire risk in the arid and semi-arid zone of Australia. Ecological Indicators, 11(1), 149–167.  https://doi.org/10.1016/j.ecolind.2009.09.001.CrossRefGoogle Scholar
  74. Velázquez-Martí, B., Fernández-González, E., Estornell, J., & Ruiz, L. a. (2010). Dendrometric and dasometric analysis of the bushy biomass in Mediterranean forests. Forest Ecology and Management, 259(5), 875–882.  https://doi.org/10.1016/j.foreco.2009.11.027.CrossRefGoogle Scholar
  75. Vilar del Hoyo, L., Isabel, M. P. M., & Vega, F. J. M. (2011). Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. European Journal of Forest Research, 130(6), 983–996.  https://doi.org/10.1007/s10342-011-0488-2.CrossRefGoogle Scholar
  76. Vilar, L., Woolford, D. G., Martell, D. L., & Martn, M. P. (2010). A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. International Journal of Wildland Fire, 19(3), 325–337.  https://doi.org/10.1071/WF09030.CrossRefGoogle Scholar
  77. Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54(3), 426–482.  https://doi.org/10.1090/S0002-9947-1943-0012401-3.CrossRefGoogle Scholar
  78. Williams, R. J., Bradstock, R. A., Cary, G. J., Dovey, L., Enright, N. J., Gill, A. M., et al. (2013). Current fire regimes, impacts and the likely changes VII: Australian fire regimes under climate change: Impacts, risks and mitigation. In J. G. Goldammer (Ed.), Current fire regimes, impacts and the likely changes VII: Australian fire regimes under climate change: impacts, risks and mitigation (pp. 133–142). Remagen-Oberwinter: Global fire monitoring center (GFMC). Kessel Publishing House.Google Scholar
  79. Wilson, J. P., & Gallant, J. C. (2000). Primary topographic attributes. In J. P. Wilson and J. C. Gallant (Eds.), Terrain analysis: Principles and applications (pp. 51–86). New York: John Wiley and Sons.Google Scholar
  80. Zhang, X., Kondragunta, S., Schmidt, C., & Kogan, F. (2008). Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmospheric Environment, 42(29), 6959–6972.  https://doi.org/10.1016/j.atmosenv.2008.04.060.CrossRefGoogle Scholar
  81. Zhang, Y., Lim, S., & Sharples, J. J. (2016). Modelling spatial patterns of wildfire occurrence in south-eastern Australia. Geomatics, Natural Hazards and Risk, 1–16.  https://doi.org/10.1080/19475705.2016.1155501.CrossRefGoogle Scholar
  82. Zumbrunnen, T., Pezzatti, G. B., Menéndez, P., Bugmann, H., Bürgi, M., & Conedera, M. (2011). Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecology and Management, 261(12), 2188–2199.  https://doi.org/10.1016/j.foreco.2010.10.009.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Giorgos Mallinis
    • 1
    Email author
  • Marius Petrila
    • 2
  • Ioannis Mitsopoulos
    • 3
    • 4
  • Adrian Lorenţ
    • 2
    • 5
  • Ştefan Neagu
    • 2
  • Bogdan Apostol
    • 2
  • Vladimir Gancz
    • 2
  • Ionel Popa
    • 2
  • Johann Georg Goldammer
    • 3
  1. 1.Department of Forestry and Management of the Environment and Natural ResourcesDemocritus University of ThraceOrestiadaGreece
  2. 2.National Institute for Research and Development in Forestry (INCDS) “Marin Drăcea”VoluntariRomania
  3. 3.Global Fire Monitoring Center (GFMC)FreiburgGermany
  4. 4.Department of Biodiversity and Protected AreasMinistry of Environment and EnergyAthensGreece
  5. 5.Faculty of Silviculture and Forest EngineeringTransilvania University of BraşovBraşovRomania

Personalised recommendations