Advertisement

Applied Spatial Analysis and Policy

, Volume 12, Issue 4, pp 753–771 | Cite as

A Multi-City Urban Population Mobility Study Using Mobile Phone Traffic Data

  • Claudio GariazzoEmail author
  • Armando Pelliccioni
Article
  • 156 Downloads

Abstract

Mobility of population is one of major problems in large metropolitan areas. It affects different social, economic and environmental aspects of a city’s life. Urban mobility is characterised by highly dynamic spatial-temporal variability not detected by census or surveys. Mobile phones allow tracking of the population, giving information about their time–space location. A multi-city population mobility study was carried out in seven main Italian large metropolitan areas for 2 months (1st March to 30th April, 2015), starting from high-resolution gridded population data derived from mobile phone traffic data. Mean daily–nightly variations of population density were calculated during weekdays with increments of population of about 25% on average and peaks up by 200% in hotspot areas. Strong spatial gradients were identified with both accumulation and depletion of population in urban zones of geographical dimensions of 55 and 44%, respectively, of the municipality areas on average. Larger metropolitan areas, such as Rome, Milan, and Turin, show the highest increments of population, while medium-sized cities (e.g., Bari and Palermo) exhibit lower values and weaker gradients of variation of population. By means of a developed mobility factor, three main mobility phenomena (morning and evening commuting, diffuse mobility) occurring during weekdays were identified and characterized.

Keywords

Urban area Human mobility Big data Commuting 

Notes

Acknowledgements

The TIM Big Data Challenge 2015 (www.telecomitalia.com/bigdatachallenge) is acknowledged for the provision of the mobile phone derived population data.

Compliance with Ethical Standards

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to research, authorship, and/or publication of this article.

Supplementary material

12061_2018_9268_MOESM1_ESM.docx (17.5 mb)
ESM 1 (DOCX 17942 kb)

References

  1. Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2011). Real-time urban monitoring using cell phones: a case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1), 5594641 pp. 141–151.CrossRefGoogle Scholar
  2. Calabrese, F., Ferrari, L., & Blondel, V. D. (2014). Urban sensing using mobile phone network data: a survey of research. ACM Computing Surveys, 47(2), 1–20.  https://doi.org/10.1145/2655691.CrossRefGoogle Scholar
  3. Demissie, M. G., Homem de Almeida Correia, G., & Bento, C. (2013). Exploring cellular network handover information for urban mobility analysis. Journal of Transport Geography, 31, 164–170.  https://doi.org/10.1016/j.jtrangeo.2013.06.016.CrossRefGoogle Scholar
  4. Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., Blodel, V. D., & Tatem, A. J. (2014). Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 11, 15888–15893.CrossRefGoogle Scholar
  5. Fang, Z., Yang, X., Xu, Y., Shaw, S. L., & Yin, L. (2017). Spatiotemporal model for assessing the stability of urban human convergence and divergence patterns. International Journal of Geographical Information Science, 31(11), 2119–2141.CrossRefGoogle Scholar
  6. Furletti, B., Trasarti, R., Cintia, P., & Gabrielli, L. (2017). Discovering and understanding city events with big data: the case of Rome. Information, 8, 74.  https://doi.org/10.3390/info8030074.CrossRefGoogle Scholar
  7. Gabrielli, L., Furletti, B., Trasarti, R., Giannotti, F., Pedreschi, D. (2015). City users’ classification with mobile phone data. Proceedings - 2015 IEEE International Conference on Big Data, Santa Clara, CA, 2015, pp. 1007–1012. doi:  https://doi.org/10.1109/BigData.2015.7363852.
  8. Gariazzo, C., Pelliccioni, A., & Bolignano, A. (2016). A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic. Atmospheric Environment, 131(2016), 289–300.  https://doi.org/10.1016/j.atmosenv.2016.02.011.CrossRefGoogle Scholar
  9. Gonzàlez, M. C., Hidalgo, C., Barabàsi, A. (2008). Understanding individual human mobility pattern. Nature, 453. doi: https://doi.org/10.1038/nature06958.CrossRefGoogle Scholar
  10. Isaacman, S., Becker, R., Càceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A. (2011). Ranges of human mobility in Los Angeles and New York. In: Ninth Annual IEEE International Conference on Pervasive Computing and Communications, PerCom 2011, 21–25 March 2011, Seattle, WA, USA, Workshop Proceedings.Google Scholar
  11. Isaacman, S., Becker, R., Càceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A. (2011a). Identifying important places in people’s lives from cellular network data. In: Pervasive computing - 9th international conference, pervasive 2011, San Francisco, CA, USA, June 12–15, 2011, Proceedings. doi:  https://doi.org/10.1007/978-3-642-21726-5_9.Google Scholar
  12. Isaacman, S., Becker, R., Càceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A., Willinger, W. (2012). Human mobility modeling at metropolitan scales. In: MobiSys '12 - 10th international conference on Mobile systems, applications, and services. Proceedings. ACM New York, NY, USA publisher. doi:  https://doi.org/10.1145/2307636.2307659.
  13. ISTAT (2014). Matrici di pendolarismo ISTA web page, available on http://www.istat.it/it/archivio/139381 in Italian.
  14. ISTAT (2016). Popolazione e famiglie. ISTAT web page, available on http://www.istat.it/it/popolazione, in Italian.
  15. Lee, K. S., You, S. Y., Eom, J. K., Song, J., & Min, J. H. (2018). Urban spatiotemporal analysis using mobile phone data: case study of medium- and large-sized Korean cities. Habitat International, 73(2018), 6–15.CrossRefGoogle Scholar
  16. Manfredini, F., Tagliolato, P., Di Rosa, C. (2011). Monitoring temporary populations through cellular core network data. In: 11th international conference on computational science and its applications, Santander, Spain, June 2011, Proceedings, Part II. Springer, pp. 151–161. doi: https://doi.org/10.1007/978-3-642-21887-3; Print ISBN:978-3-642-21886-6; Online ISBN:978-3-642-21887-6.Google Scholar
  17. National Authority for Communication (2016). Communication market monitoring system. Technical report n.1/2016. Available on: http://www.agcom.it/documents/10179/4304099/Allegato+6-4-2016/e17e2d92-160d-4b77-9202-9469cc990d14?version=1.0.
  18. Phithakkitnukoon, S., Smoreda, Z., & Olivier, P. (2012). Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS One, 7, e39253.CrossRefGoogle Scholar
  19. Pucci, P., Manfredini, F., & Tagliolato, P. (2015). Mapping urban practices through mobile phone data. Springer briefs in applied science and technology. Cham: Springer.  https://doi.org/10.1007/978-3-319-14833-5.CrossRefGoogle Scholar
  20. Ratti, C., Frenchman, D., Pulselli, R. M., & Williams, S. (2006). Mobile landscapes: using location data from cell phones for urban analysis. Environment and Planning. B, Planning & Design, 33(5), 727–748.CrossRefGoogle Scholar
  21. Reades, J., Calabrese, F., Sevtsuk, A., & Ratti, C. (2007). Cellular census: explorations in urban data collection. IEEE Pervasive Computing, 6(3), 30–38.CrossRefGoogle Scholar
  22. Secchi, P., Vantini, S., & Vitelli, V. (2015). Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan. Statistical Methods and Applications, 24(2), 279–300.  https://doi.org/10.1007/s10260-014-0294-3.CrossRefGoogle Scholar
  23. Soto, V., & Frias-Martinez, E. (2011). Robust land use characterization of urban landscapes using cell phone data. In Proceedings of the First Workshop on Pervasive Urban Applications. Purba '11. San Francisco, CA, USA.Google Scholar
  24. Traag, V.A., Browet, A., Calabrese, F., Morlot, F. (2011). Social event detection in massive mobile phone data using probabilistic location inference. In: PASSAT/SocialCom 2011, Privacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third International Conference on Social Computing (SocialCom), Boston, MA, USA, 9–11 Oct., 2011. doi:  https://doi.org/10.1109/PASSAT/SocialCom.2011.133.
  25. Trasarti, R., Olteanu-Raimond, A., Nanni, M., Couronnè, T., Furletti, B., Giannotti, F., Smoreda, Z., & Ziemlicki, C. (2015). Discovering urban and country dynamics from mobile phone data with spatial correlation patterns. Telecommunications Policy, 39(3–4), 1375, pp. 347-362.  https://doi.org/10.1016/j.telpol.2013.12.002i.CrossRefGoogle Scholar
  26. Widhalm, P., Yang, Y., Ulm, M., Athavale, S., & González, M. C. (2015). Discovering urban activity patterns in cell phone data. Transportation, 42(4), 597–623.  https://doi.org/10.1007/s11116-015-9598-x.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Occupational & Environmental MedicineINAILMonteporzio Catone, RomeItaly

Personalised recommendations