Advertisement

Applied Spatial Analysis and Policy

, Volume 8, Issue 4, pp 351–370 | Cite as

Simulating Residential Location Choice at Different Geographical Scales: The Case of Lyon

  • Marko KryvobokovEmail author
  • Alain Bonnafous
  • Dominique Bouf
Article

Abstract

The paper deals with the Modifiable Areal Unit Problem in residential location choice. The household location choice model from the UrbanSim simulation framework is calibrated at different spatial scales. The capacity to predict the geographical distribution of population is a criterion for the choice of an areal unit. Thus, residential location choice is predicted for past years with the same model specification at the scales of blocks, zones, and municipalities. The municipality-based model has better predictive capacity and the least stochastic variation in comparison with the block-based and zone-based models, but the block-based output aggregated to municipal scale produces the best prediction comparable with an evenly split population growth.

Keywords

Household location choice Multinomial logit Areal unit Scale problem UrbanSim 

Notes

Acknowledgments

The study is part of project PLAINSUDD sponsored though French ANR (number ANR-08-VD-00). Most of Marko Kryvobokov’s work related to this paper was done while he was affiliated with the Laboratory of Transport Economics in Lyon. The authors appreciate the valuable comments of anonymous reviewers.

References

  1. Alonso, W. (1964). Location and land use. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  2. Ben-Akiva, M., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application to travel demand. Cambridge: MIT Press.Google Scholar
  3. Bonnafous, A., Crozet, Y., Mercier, A., Ovtracht, N., Péguy, P.-Y., & Puech, F. (2011). MOSART et le projet PLAINSUDD: Une plate-forme de modélisation et simulation de l’accessibilité pour l’aide à la décision et l’aménagement du territoire. In J.-P. Antoni (Ed.), Modéliser la ville: Formes urbaines et politiques de transport (pp. 186–210). Paris: Economica.Google Scholar
  4. Briant, A., Combes, P.-P., & Lafourcade, M. (2010). Dots to boxes: Do the size and shape of spatial units jeopardize economic geography estimations? Journal of Urban Economics, 67(3), 287–302.CrossRefGoogle Scholar
  5. Briassoulis, H. (2001). Policy-oriented integrated analysis of land-use change: An analysis of data needs. Environmental Management, 27(1), 1–11.CrossRefGoogle Scholar
  6. Chang, J. S. (2006). Models of the relationship between transport and land-use: A review. Transport Reviews, 26(3), 325–350.CrossRefGoogle Scholar
  7. de Palma, A., Motamedi, K., Picard, N., & Waddell, P. (2005). A model of residential location choice with endogenous housing prices and traffic for Paris region. European Transport, 31, 67–82.Google Scholar
  8. de Palma, A., Picard, N., & Waddell, P. (2007). Discrete choice models with capacity constraints: An empirical analysis of the housing market of the greater Paris region. Journal of Urban Economics, 62(2), 204–230.CrossRefGoogle Scholar
  9. Delons, J., Coulombel, N., & Leurent, F. (2009). PIRANDELLO: An integrated transport and land-use model for the Paris area. Paper presented at the 88th Transportation Research Board Meeting, Washington, D.C.Google Scholar
  10. Duthie, J., Kockelman, K., Valsaraj, V., & Zhou, B. (B.) (2007). Applications of integrated models of land use and transport: A comparison of ITLUP and UrbanSim land use models. Paper presented at the 54th North American Meetings of the Regional Science Association International, Savannah, Georgia. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.4953&rep=rep1&type=pdf.
  11. Felsenstein, D., & Ashbel, E. (2010). Simultaneous modelling of developer behavior and land prices in UrbanSim. Journal of Transport and Land Use, 3(2), 107–127.Google Scholar
  12. Fotheringhem, A. S., & Wong, D. W. S. (1991). The modifiable areal unit problem in multivariate statistical analysis. Environment & Planning A, 23(7), 1025–1044.CrossRefGoogle Scholar
  13. Hunt, J. D., Kriger, D. S., & Miller, E. J. (2005). Current operational urban land-use-transport modelling frameworks: A review. Transport Reviews, 25(3), 329–376.CrossRefGoogle Scholar
  14. Iacono, M., Levinson, D., & El-Geneidy, A. (2008). Models of transportation and land use change: A guide to the territory. Journal of Planning Literature, 22(4), 323–340.CrossRefGoogle Scholar
  15. Jelinski, D. E., & Jianguo, W. (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, 11(3), 129–140.CrossRefGoogle Scholar
  16. Kryvobokov, M. (2010). Is it worth identifying service employment (sub)centres when modelling apartment prices? Journal of Property Research, 27(4), 371–390.CrossRefGoogle Scholar
  17. Kryvobokov, M., Chesneau, J.-B., Bonnafous, A., Delons, J., & Piron, V. (2013). Comparison of static and dynamic land use-transport interaction models: PIRANDELLO and UrbanSim applications. Transportation Research Record, 2344(1), 49–58.CrossRefGoogle Scholar
  18. Löchl, M., & Axhausen, K. W. (2010). Modelling hedonic residential rents for land use and transport simulation while considering spatial effects. Journal of Transport and Land Use, 3(2), 39–63Google Scholar
  19. McFadden, D. (1981). Econometric models of probabilistic choice. In C. Manski & D. McFadden (Eds.), Structural analysis of discrete data with econometric applications (pp. 198–272). Cambridge: MIT Press.Google Scholar
  20. Mennis, J. (2003). Generating surface models of population using dasymetric mapping. The Professional Geographer, 55(1), 31–42.Google Scholar
  21. Muth, R. (1969). Cities and housing. Chicago: University of Chicago Press.Google Scholar
  22. Openshaw, S. (1983). The modifiable areal unit problem (Concepts and techniques in modern geography, Vol. 38). Norwich: Geo Books.Google Scholar
  23. Pan Ké Shon, J.-L. (2010). The ambivalent nature of ethnic segregation in France’s disadvantaged neighbourhoods. Urban Studies, 47(8), 1603–1623.CrossRefGoogle Scholar
  24. Patterson, Z., Kryvobokov, M., Marchal, F., & Bierlaire, M. (2010). Disaggregate model with aggregate data: Two UrbanSim applications. Journal of Transport and Land Use, 3(2), 5–37.CrossRefGoogle Scholar
  25. Timmermans, H. (2003). The saga of integrated land use-transport modelling: How many more dreams before we wake up? Conference keynote paper, 10th International Conference on Travel Behaviour Research, Lucerne, Switzerland.Google Scholar
  26. Train, K. (2003). Discrete choice methods and simulation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Urbansim Project (2011) Opus: The open platform for urban simulation and UrbanSim Version 4.3. users guide and reference manual. University of California Berkeley, and University of Washington, Seattle. URL: http://www.urbansim.org/downloads/manual/dev-version/opus-userguide/.
  28. Waddell, P. (2002). UrbanSim: Modelling urban development for land use, transportation and environmental planning. Journal of the American Planning Association, 68(3), 297–314.CrossRefGoogle Scholar
  29. Waddell, P. (2011). Integrated land use and transportation planning and modelling: Addressing challenges in research and practice. Transport Reviews, 31(2), 209–229.CrossRefGoogle Scholar
  30. Waddell, P., Borning, A., Noth, M., Freier, N., Becke, M., & Ulfarsson, G. (2003). Microsimulation of Urban development and location choices: Design and implementation of UrbanSim. Networks and Spatial Economics, 3(1), 43–67.CrossRefGoogle Scholar
  31. Waddell, P., Ulfarsson, G., Franklin, J., & Lobb, J. (2007). Incorporating land use in metropolitan transportation planning. Transportation Research Part A, 41(5), 382–410.Google Scholar
  32. Waddell, P., Wang, L., Charlton, B., & Olsen, A. (2010). Microsimulating parcel-level land use and activity-based travel: Development of a prototype application in San Francisco. Journal of Transport and Land Use, 3(2), 65–84.CrossRefGoogle Scholar
  33. Wegener, M. (2004). Overview of land-use transport models. In D. A. Hensher & K. Button (Eds.), Transport geography and spatial systems (Handbook 5 of the handbook in transport, pp. 127–146). Kidlington: Pergamon/Elsevier Science.Google Scholar
  34. Wegener, M. (2011). From macro to micro – How much micro is too much? Transport Reviews, 31(2), 161–177.CrossRefGoogle Scholar
  35. Wilson, A. (2010). The general urban model: Retrospect and prospect. Papers in Regional Science, 89(1), 27–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marko Kryvobokov
    • 1
    Email author
  • Alain Bonnafous
    • 2
  • Dominique Bouf
    • 2
  1. 1.Centre d’Etudes en Habitat DurableCharleroiBelgium
  2. 2.Laboratory of Transport Economics (LET)Lyon Cedex 07France

Personalised recommendations