Advertisement

Applied Spatial Analysis and Policy

, Volume 7, Issue 3, pp 283–299 | Cite as

An Ecological Approach to Understanding Adult Obesity Prevalence in the United States: A County-level Analysis using Geographically Weighted Regression

  • Nyesha C. BlackEmail author
Article

Abstract

This study examines ecological influences on adult obesity prevalence in the coterminous United States. Several secondary data sources are used in this study to construct a rich dataset of county-level demographic, socioeconomic, and environmental variables. This study uses a spatially explicit approach by using traditional regression methods (i.e., ordinary least squared regression (OLS)), along with geographic weighted regression (GWR) to explore non-stationarity in the relationships between obesity and selected covariates. OLS results reveal that there is a positive relationship between adult obesity and poverty, black residents, Native American residents, and adult physical inactivity at the county level. There is a negative relationship between the percentage of residents who are rural, Hispanic, and college educated. Furthermore, GWR results confirm that place matters and the relationship between ecological influences and obesity prevalence varies substantially across place. GWR provides an empirical basis to design interventions that effectively target obesity at a more local level.

Keywords

Geographically weight regression Obesity Health 

References

  1. Ali, K., Partridge, M. D., & Olfert, M. R. (2007). Can geographically weighted regressions improve regional analysis and policy making? International Regional Science Review, 30, 300–329.CrossRefGoogle Scholar
  2. Allison, P. D. (1999). Multiple regressions: a primer. Thousand Oaks, CA: Pine Forge Press.Google Scholar
  3. Anselin, L. (1988). Do spatial effects really matter in regression analysis? Papers of the Regional Science Association, 65, 11–34.CrossRefGoogle Scholar
  4. Arcaya, M., Brewster, M., Zigler, C. M., & Subramanian, S. V. (2012). Area variations in health: a spatial multilevelmodeling approach. Health P lace, 18(4), 824–831.Google Scholar
  5. Baker, E. A., Schootman, M., Barnidge, E., & Kelly, C. (2006). The role of race and poverty in access to foods that enable individuals to adhere to dietary guidelines. Preventing Chronic Disease, 3(3), A76.Google Scholar
  6. Berrigan, D., & Troiano, R. P. (2002). The association between urban form and physical activity in U.S. adults. American Journal of Preventive Medicine, 23, 74–79.CrossRefGoogle Scholar
  7. Bitter, C., Mulligan, G., & Dallerba, S. (2007). Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method. Journal of Geographical Systems, 9, 7–27.CrossRefGoogle Scholar
  8. Bodor, J., Rice, J., Farley, T., Swalm, C., & Rose, D. (2010). The association between obesity and urban food environments. Journal of Urban Health, 87, 771–781.CrossRefGoogle Scholar
  9. Bowman, S. A., & Vinyard, B. T. (2004). Fast food consumption of U.S. Adults: impact on energy and nutrient intakes and overweight status. Journal of the American College of Nutrition, 23, 163–168.CrossRefGoogle Scholar
  10. Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically weighted regression-modelling spatial Non-stationarity. Journal of the Royal Statistical Society Series D (The Statistician), 47, 431–443.CrossRefGoogle Scholar
  11. Chalkias, C., Papadopoulos, A. G., Kalogeropoulos, K., Tambalis, K., Psarra, G., & Sidossis, L. (2013). Geographical heterogeneity of the relationship between childhood obesity and socio-environmental status: empirical evidence from Athens, Greece. Applied Geography, 37, 34–43.CrossRefGoogle Scholar
  12. Charlton, M., Fotheringham, S., Brunsdon, C., 2003. GWR 3. Software for geographically weighted regression. Spatial Analysis Research Group, Department of Geography,University of Newcastle upon Tyne,England. Google Scholar
  13. Cossman, J. S., Cossman, R. E., James, W. L., Campbell, C. R., Blanchard, T. C., & Cosby, A. G. (2007). Persistent clusters of mortality in the United States. American Journal of Public Health, 97, 2148–2150.CrossRefGoogle Scholar
  14. Cummins, S., Curtis, S., Diez-Roux, A. V., & Macintyre, S. (2007). Understanding and representing ‘place’in health research: a relational approach. Social Science & Medicine, 65(9), 1825–1838.CrossRefGoogle Scholar
  15. Diez-Roux, A. V., & Mair, C. (2010). Neighborhoods and health. Annals of the New York Academy of Sciences, 1186, 125–145.CrossRefGoogle Scholar
  16. Dorling, D. (2001). How much does place matter. Environment and Planning A, 33(8), 1335–1369.CrossRefGoogle Scholar
  17. Drewnowski, A., & Specter, S. E. (2004). Poverty and obesity: the role of energy density and energy costs. The American Journal of Clinical Nutrition, 79(1), 6–16.Google Scholar
  18. Ezzat, M., Friedman, A. B., Kulkarni, S. C., & Murray, C. J. L. (2008). The reversal of fortunes: trends in county mortality and cross-county mortality disparities in the United States. PLoS Medicine, 5(4), 66.CrossRefGoogle Scholar
  19. Farber, S., & Páez, A. (2007). A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations. Journal of Geographical Systems, 9(4), 371–396.CrossRefGoogle Scholar
  20. Finkelstein, E. A., Trogon, J. G., Cohen, J. W., & Diez, W. (2009). Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Affairs, 28(5), 822–831.CrossRefGoogle Scholar
  21. Flegal, K. M., Carroll, M. D., Ogden, C. L., & Johnson, C. L. (2002). Prevalence and trends in obesity among US adults, 1999-2000.’. JAMA, the Journal of the American Medical Association, 288, 1723–1727.CrossRefGoogle Scholar
  22. Flegal, K. M., Carroll, M. D., Kit, B. K., & Ogden, C. L. (2012). Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA, the Journal of the American Medical Association, 307(5), 491–497.CrossRefGoogle Scholar
  23. Fotheringham, A. S., & Wong, D. W. S. (1991). The modifiable areal unit problem in statistical analysis. Environment and Planning, 23, 1025–1044.CrossRefGoogle Scholar
  24. Fotheringham, A. S., Brunsdon, C., & Charlton, M. E. (2002). Geographically weighted regression: the analysis of spatially varying relationships. Chichester: Wiley.Google Scholar
  25. Fraser, L. K., Clarke, G. P., Cade, J. E., & Edwards, K. L. (2012). Fast food and obesity: a spatial analysis in a large United Kingdom population of children aged 13–15. American Journal of Preventive Medicine, 42(5), 77–85.CrossRefGoogle Scholar
  26. Geronimus, A. T., Bound, J., Waidmann, T. A., Hillemeier, M. A., & Burns, P. B. (1996). Excess mortality among blacks and whites in the United States. New England Journal of Medicine, 335, 1552–1558.CrossRefGoogle Scholar
  27. Goodchild, M. F. (2011). Formalizing place in geographic information systems communities, neighborhoods, and health. In L. M. M. Burton, S. A. P. Matthews, M. Leung, S. P. A. Kemp, & D. T. T. Takeuchi (Eds.), Social disparities in health and health care (pp. 21–33). New York: Springer.Google Scholar
  28. House, J. S., Schoeni, R. F., Kaplan, G. A., & Pollack, H. (2009). The health effects of social and economic policy: the promise and challenge for research and policy. Ann Arbor, Michigan: The National Poverty Center.Google Scholar
  29. Hu, F. B., Li, T. Y., Colditz, G. A., Willett, W. C., & Manson, J. E. (2003). Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA, the Journal of the American Medical Association, 289, 1785–1791.CrossRefGoogle Scholar
  30. Iceland, J. 2004. The multigroup entropy index (also known as Theil’s H or the information theory index). US Census Bureau. http://www.census.gov/hhes/www/housing/housing_patterns/multigroup_entropy.pdf.
  31. Jackson, J., Doescher, M. P., Jerant, A. F., & Hart, L. G. (2005). A national study of obesity prevalence and trends by type of rural county. The Journal of Rural Health, 21, 140–148.CrossRefGoogle Scholar
  32. Jelinski, D., Wu, J., 1996. The modifiable areal unit problem and implications for landscape ecology Landscape Ecology 11, 129-140Google Scholar
  33. Kearns, R. A., & Gesler, W. M. (1998). Putting health into place: landscape, identity, and well-being. Syracuse, New York: Syracuse University Press.Google Scholar
  34. Kim, D., Subramanian, S. V., Gortmaker, S. L., & Kawachi, I. (2006). US state- and county-level social capital in relation to obesity and physical inactivity: a multilevel, multivariable analysis. Social Science & Medicine, 63(4), 1045–1059.CrossRefGoogle Scholar
  35. Larson, N. I., Story, M. T., & Nelson, M. C. (2009). Neighborhood environments: disparities in access to healthy foods in the U.S. American Journal of Preventive Medicine, 36, 74–81.CrossRefGoogle Scholar
  36. Lean, M. (2010). Health consequences of overweight and obesity in adults. In D. Crawford, R. W. Jeffery, K. Ball, & J. Brug (Eds.), Obesity epidemiology: from Aetiology to public health (pp. 43–58). Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Ledikwe, J. H., Blanck, H. M., Khan, L. K., Serdula, M. K., Seymour, J. D., Tohill, B. C., et al. (2006). Dietary energy density is associated with energy intake and weight status in US adults. The American Journal of Clinical Nutrition, 83, 1362–1368.Google Scholar
  38. Lobao, L., & Kraybill, D. S. (2005). The emerging roles of county governments in metropolitan and nonmetropolitan areas: findings from a national survey. Economic Development Quarterly, 19(3), 245–259.CrossRefGoogle Scholar
  39. Lovasi, G. S., Hutson, M. A., Guerra, M., & Neckerman, K. M. (2009). Built environments and obesity in disadvantaged populations. Epidemiologic Reviews, 31, 7–20.CrossRefGoogle Scholar
  40. Ludwig, D. S., Peterson, K. E., & Gortmaker, S. L. (2001). Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. The Lancet, 357, 505–508.CrossRefGoogle Scholar
  41. Lynch, J. W., & Kaplan, G. A. (1997). Understanding How inequality in the distribution of income affects health. Journal of Health Psychology, 2, 297–314.CrossRefGoogle Scholar
  42. Macintyre, S., Maciver, S., & Sooman, A. (1993). Area, class and health: should we be focusing on places or people? Journal of Social Policy, 22(02), 213–234.CrossRefGoogle Scholar
  43. Macintyre, S., Ellaway, A., & Cummins, S. (2002). Place effects on health: how can we conceptualise, operationalise and measure them? Social Science & Medicine, 55, 125–139.CrossRefGoogle Scholar
  44. Matthews SA. Spatial polygamy and the heterogeneity of place: studying people and place via egocentricmethods. In: Burton LM, Kemp SP, Leung M, Matthews SA, Takeuchi DT, editors. Communities,neighborhoods, and health: Expanding the boundaries of place. Springer; 2011. pp. 35–55.Google Scholar
  45. Matthews, S. A., & Yang, T. C. (2012). Mapping the results of local statistics. Demographic Research, 26(6), 151–166.CrossRefGoogle Scholar
  46. McLaughlin, D. K., Stokes, C. S., Smith, P. J., & Nonoyama, A. (2007). Differential mortality across the United States: the influence of place-based inequality. In L. M. Lobao, G. Hooks, & A. R. Tickamyer (Eds.), The sociology of spatial inequality. Albany: State University of New York Press.Google Scholar
  47. Menard, S. (2001). Sage publications. Incorporated.: Thousand Oaks, CA. Applied logistic regression analysis.Google Scholar
  48. Mitchell, R. (2001). Multilevel modeling might not be the answer. Environment and planning A, 33(8), 1357–1360.Google Scholar
  49. Morland, K., Wing, S., Diez-Roux, A., & Poole, C. (2002). Neighborhood characteristics associated with the location of food stores and food service places. American Journal of Preventive Medicine, 22, 23–29.CrossRefGoogle Scholar
  50. Murray, C. J. L., Sandeep, C. K., Michaud, C., Tomijima, N., Bulzacchelli, M., Iandiorio, T. J., et al. (2006). Eight Americas: investigating mortality disparities across races, counties, and race-counties in the United States. PLoS Medicine, 3, 1513–1524.Google Scholar
  51. Ogden, C. L., Carroll, M. D., Kit, B. K., & Flegal, K. M. (2012). Prevalence of obesity and trends in body mass index among US children and adolescents 1999-2010. JAMA, the Journal of the American Medical Association, 307(5), 483–490.CrossRefGoogle Scholar
  52. Openshaw S, Taylor PJ. 1981. The modifiable areal unit problem. In: Wrigley, N., Bennett, R., Kegan, P. (Eds), Quantitative Geography: A British View. London. pp. 60–69.Google Scholar
  53. Pacione, M. (1984). Evaluating the quality of the residential environment in a high-rise public housing development. Applied Geography, 4, 59–70.CrossRefGoogle Scholar
  54. Popkin, B. M. (2008). The world is Fat—the fads, trends, policies, and products that Are fattening the human race. New York, NY: Avery-Penguin Group.Google Scholar
  55. Procter, K. L., Clarke, G. P., Ransley, J. K., & Cade, J. (2008). Micro‐level analysis of childhood obesity, diet, physical activity, residential socioeconomic and social capital variables:where are the obesogenic environments in Leeds? Area, 40(3), 323–340.CrossRefGoogle Scholar
  56. Ramsey, P. W., & Glenn, L. L. (2002). Obesity and health status in rural, urban, and suburban southern women. Southern Medical Journal, 95, 666–671.CrossRefGoogle Scholar
  57. Rushton, G., Armstrong, M. P., Gittler, J., Greene, B. R., Pavlik, C. E., West, M. M., & Zimmerman, D. L. (Eds.). (2010). Geocoding health data: the use of geographic codes in cancer prevention and control, research and practice. CRC PressGoogle Scholar
  58. Sallis, J. F., & Glanz, K. (2009). Physical activity and food environments: solutions to the obesity epidemic. Milbank Quarterly, 87, 123–154.CrossRefGoogle Scholar
  59. Schulze, M. B., Manson, J. E., Ludwig, D. S., Colditz, G. A., Stampfer, M. J., Willett, W. C., et al. (2004). Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle- aged women. JAMA, the Journal of the American Medical Association, 292, 927–934.CrossRefGoogle Scholar
  60. Schuurman, N., Peters, P. A., & Oliver, L. N. (2012). Are obesity and physical activity clustered? a spatial analysis linked to residential density. Obesity, 17(12), 2202–2209.CrossRefGoogle Scholar
  61. Shaw, M., Dorling, D., & Mitchell, R. (2002). Health, place, and society. Harlow: Pearson Education.Google Scholar
  62. Thiele, S., & Weiss, C. (2003). Consumer demand for food diversity: evidence for Germany. Food Policy, 28(2), 99–115.CrossRefGoogle Scholar
  63. Tobler, W. (2004). On the first law of geography: a reply. Annals of the Association of American Geographers, 94(2), 304–310.CrossRefGoogle Scholar
  64. Tunstall, H. V. Z., Shaw, M., & Dorling, D. (2004). Places and health. Journal of Epidemiology and Community Health, 58(1), 6–10.CrossRefGoogle Scholar
  65. Wang, Y., & Beydoun, M. A. (2007). The obesity epidemic in the united states—gender, Age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiologic Reviews, 29, 6–28.CrossRefGoogle Scholar
  66. Ward, M. D., & Gleditsch, K. (2008). Spatial regression models. London: Sage.Google Scholar
  67. Wen, T. H., Chen, D. R., & Tsai, M. J. (2010). Identifying geographical variations in poverty-obesity relationships: empirical evidence from Taiwan. Geospatial Health, 4(2), 257–265.Google Scholar
  68. Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Sociology Population Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations