Applied Spatial Analysis and Policy

, Volume 2, Issue 3, pp 237–260 | Cite as

Spatial Analysis of the Urban-to-Rural Migration Determinants in the Viennese Metropolitan Area. A Transition from Suburbia to Postsuburbia?

Article

Abstract

Currently urban spatial structures are affected by pervasive developments, which provoke a diversity and reorganization of population. This article examines the driving forces that cause urban-to-rural migration of population in the Austrian metropolitan area of Vienna using exploratory spatial analysis methods over the time period from 2001 to 2006. To model the qualitative changes between sub- and postsuburban processes, fuzzy sets are applied as variables. Because of significant concentration of high urban-to-rural migration along the main transportation corridors, a geographically weighted regression approach is used to determine whether suburban or postsuburban determinants are essential to predict urban-to-rural migration. The results show that the spatial variation of urban-to-rural migration can be statistically best modeled by using the two covariates “good accessibility to the core city by motorized individual transport” and a “high land price index”. The article argues that this represents the prominence of classical hard location factors, which are interpreted as typical suburban. Accordingly, the metropolitan area is—concerning urban-to-rural migration—still under the influence of suburban processes.

Keywords

Suburbanization Postsuburbanization Urban-to-rural migration Driving forces Geographically weighted regression Vienna (Austria) 

References

  1. Alonso, W. (1964). Location and land use: toward a general theory of land rent. Cambridge: Howard University Press.Google Scholar
  2. Anas, A., Arnott, R., & Small, K. (1998). Urban spatial structure. Journal of Economic Literature, 36, 1426–1464.Google Scholar
  3. Anselin, L. (1995). Local indicators of spatial association–LISA. Geographical Analysis, 27, 93–115.Google Scholar
  4. Anselin, L. (2005). Spatial statistical modeling in a GIS environment. In D. Maguire, M. Batty & M. Goodchild (Eds.), GIS, spatial analysis and modeling (pp. 93–111). Redlands: ESRI Press.Google Scholar
  5. Aring, J. (1999). Suburbia—Postsuburbia—Zwischenstadt. Die jüngere Wohnsiedlungsentwicklung im Umland der großen Städte Westdeutschlands und Folgerungen für die Regionale Planung und Steuerung. Hannover: ARL.Google Scholar
  6. Batty, M. (2001). Polynucleated urban landscapes. Urban Studies, 38, 635–655.CrossRefGoogle Scholar
  7. Batty, M., & Longley, P. (1994). Fractal cities: A geometry of form and function. London: Acad. Press.Google Scholar
  8. Batty, M., Yichun, X., & Zhanli, S. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23, 205–233.CrossRefGoogle Scholar
  9. Baum-Snow, N. (2007). Did highways cause suburbanization? Quarterly Journal of Economics, 122, 775–805.CrossRefGoogle Scholar
  10. Bontje, M., & Burdack, J. (2005). Edge cities, European-style: examples from Paris and the Randstad. Cities, 22, 317–330.CrossRefGoogle Scholar
  11. Borsdorf, A. (2003). Wenn Städte “geformter Geist” sind, wofür steht dann Postsuburbia? Spurenlesen im ruralen Raum. TRANS. Internet-Zeitschrift für Kulturwissenschaften, 15. http://www.inst.at/trans/15Nr/03_7/borsdorf15.htm. Last accessed Nov 13 2008.
  12. Borsdorf, A. (2004). On the way to post-suburbia? Changing structures in the outskirts of European cities. In A. Borsdorf & P. Zembri (Eds.), Structures. European cities: Insights on outskirts (pp. 7–30). Paris: Blanchard Printing.Google Scholar
  13. Boustedt, O. (1975). Gedanken und Beobachtungen zum Phänomen der Suburbanisierung. In ARL (Ed.), Beiträge zum Problem der Suburbanisierung (pp. 1–23). Hannover: Schroedel.Google Scholar
  14. Brake, K. (2005). Der suburbane Raum als Standorttyp. In K. Brake, I. Einacke & H. Mäding (Eds.), Kräfte, Prozesse, Akteure - zur Empirie der Zwischenstadt. Zwischenstadt Band 3 (pp. 9–65). Wuppertal: Müller + Busmann.Google Scholar
  15. Brake, K., Dangschat, J., Herfert, G. (2001). Suburbanisierung in Deutschland. Aktuelle Tendenzen. Opladen: Leske + Budrich.Google Scholar
  16. Brunsdon, C., Fotheringham, S., & Charlton, M. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28, 281–298.Google Scholar
  17. Brunsdon, C., Fotheringham, S., & Charlton, M. (1999). Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science, 39, 497–524.CrossRefGoogle Scholar
  18. Brunsdon, C., McClatchey, J., & Unwin, D. (2000). Spatial variations in the average rainfall-altitude relationship in Great Britain: an approach using geographically weighted regression. International Journal of Climatology, 21, 455–466.CrossRefGoogle Scholar
  19. Burchfield, M., Overman, H., Puga, D., & Turner, M. (2006). Causes of sprawl: A portrait from space. Quarterly Journal of Economics, 121, 587–633.CrossRefGoogle Scholar
  20. Burdack, J., & Herfert, G. (1998). Neue Entwicklungen an der Peripherie europäischer Großstädte. Ein Überblick. Europa Regional, 6, 26–44.Google Scholar
  21. Burnham, K., & Anderson, D. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer.Google Scholar
  22. Burrough, P., & Frank, A. (1996). Geographic objects with indeterminate boundaries. GISDATA 2. London: Taylor & Francis.Google Scholar
  23. Carruthers, J., & Ulfarsson, G. (2003). Urban sprawl and the cost of public services. Environment and Planning B: Planning and Design, 30, 503–522.CrossRefGoogle Scholar
  24. Christaller, W. (1933). Die zentralen Orte in Süddeutschland. Eine ökonomisch-geographische Untersuchung über die Gesetzmässigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen. Jena: Fischer.Google Scholar
  25. Clark, W. (2002). Monocentric to polycentric: New urban forms and old paradigms. In G. Bridge & S. Watson (Eds.), Companion to the City (pp. 141–154). Oxford: Blackwell.Google Scholar
  26. Clarke, K., & Gaydos, L. (1998). Loose coupling a cellular automaton model and GIS: Long-term growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12, 699–714.CrossRefGoogle Scholar
  27. Cliff, A., & Ord, J. (1981). Spatial processes. Models & applications. London: Pion.Google Scholar
  28. Cortie, C., Dijst, M., & Ostendorf, W. (1992). The Randstad a metropolis? Tijdschrift voor economische en sociale geografie, 83, 278–288.CrossRefGoogle Scholar
  29. Dear, M., & Flusty, S. (2002). The resistible rise of the L.A. school. In M. Dear (Ed.), From Chicago to L.A. Making sense of urban theory (pp. 5–16). Thousand Oaks: Sage Publications.Google Scholar
  30. Eisenreich, D., & Schenk, W. (2002). Abkopplungstendenzen des suburbanen Raums von der Kernstadt—das Beispiel der Filderregion südlich von Stuttgart. Standort—Zeitschrift für angewandte Geographie, 26, 173–179.CrossRefGoogle Scholar
  31. Ewing, R. (1997). Is Los Angeles-style sprawl desirable? Journal of the American Planning Association, 63, 107–126.CrossRefGoogle Scholar
  32. Fassmann, H., Görgl, P., & Helbich, M. (forthcoming). Atlas der wachsenden Stadtregion Wien.Google Scholar
  33. Feng, J., & Zhou, Y. (2005). Suburbanization and the changes of urban internal spatial structure in Hangzhou, China. Urban Geography, 26, 107–136.CrossRefGoogle Scholar
  34. Fischer, M. (2006). Spatial analysis in geography. In M. Fischer (Ed.), Spatial analysis and GeoComputation. Selected essays (pp. 17–28). Berlin: Springer.Google Scholar
  35. Fishman, R. (1987). Bourgeois utopias. The rise and fall of suburbia. New York: Basic Books.Google Scholar
  36. Fotheringham, S., & Wong, D. (1991). The modifiable areal unit problem in multivariate statistical analysis. Environment and Planning A, 23, 1025–1044.CrossRefGoogle Scholar
  37. Fotheringham, S., Charlton, M., & Brunsdon, C. (1996). The geography of parameter space: an investigation of spatial nonstationarity. International Journal of Geographical Information Systems, 10, 605–627.Google Scholar
  38. Fotheringham, S., Charlton, M., & Brunsdon, C. (2001). Spatial variations in school performance: a local analysis using geographically weighted regression. Geographical and Environmental Modelling, 5, 43–66.CrossRefGoogle Scholar
  39. Fotheringham, S., Charlton, M., & Brunsdon, C. (2002). Geographically weighted regression. The analysis of spatially varying relationships. Chichester: Wiley.Google Scholar
  40. Frankhauser, P. (2004). Comparing the morphology of urban patterns in Europe. A fractal approach. In A. Borsdorf & P. Zembri (Eds.), Structures. European cities: Insights on outskirts (pp. 79–105). Paris: Blanchard Printing.Google Scholar
  41. Friedrichs, J., & Rohr, H.-G. (1975). Ein Konzept der Suburbanisierung. In ARL (Ed.), Beiträge zum Problem der Suburbanisierung (pp. 25–37). Hannover: Schroedel.Google Scholar
  42. Fuchs, I. (1997). Stadtregionen 1991—Das Konzept. Statistische Nachrichten, 2, 76–83.Google Scholar
  43. Gaebe, W. (1987). Verdichtungsräume. Stuttgart: Teubner.Google Scholar
  44. Garreau, J. (1992). Edge city: Life on the new frontier. New York: Anchor Books.Google Scholar
  45. Getis, A. (1983). Second order analysis of point patterns: the case of Chicago as a multicenter region. The Professional Geographer, 35, 73–80.CrossRefGoogle Scholar
  46. Giffinger, R., Kramar, H., & Loibl, W. (2001). Suburbanisierung in Österreich: ein steuerbarer Trend der Siedlungsentwicklung? In ARL (Ed.), Stadt-Umland-Probleme und Entwicklung des großflächigen Einzelhandels in den Ländern Mittel- und Südosteuropas (pp. 25–49). Hannover: Schroedel.Google Scholar
  47. Glaeser, E., & Kahn, M. (2004). Sprawl and urban growth. In V. Henderson & J.-F. Thisse (Eds.), Handbook of urban and regional economics. Cities and geography, 4 (pp. 2481–2528). Amsterdam: North-Holland.Google Scholar
  48. Goodchild, M. (1986). Spatial autocorrelation. Norwich: Geo Books.Google Scholar
  49. Gordon, P., & Richardson, H. (1997). Are compact cities a desirable planning goal? Journal of the American Planning Association, 63, 95–106.CrossRefGoogle Scholar
  50. Gordon, P., Richardson, H., & Wong, H. (1986). The distribution of population and employment in a polycentric city: The case of Los Angeles. Environment and Planning A, 18, 161–173.CrossRefGoogle Scholar
  51. Görgl, P. (2005). Structures postsuburbaines dans la region urbaine de Vienne. Revue Geographique de l'Est, 3–4, 133–144.Google Scholar
  52. Hahn, A., & Steinbusch, M. (2006). Zwischen Möglichkeit und Grenze: Zur Bedeutungsgestalt der Zwischenstadt. Wuppertal: Müller + Busmann.Google Scholar
  53. Hall, P. (1993). Forces shaping urban Europe. Urban Studies, 30, 883–898.CrossRefGoogle Scholar
  54. Hall, T. (1998). Urban Geography. London: Routledge.Google Scholar
  55. Hanika, A., Biffl, G., Fassmann, H., Kytir, J., Lebhart, G., Marik, S., et al. (2004). ÖROK-Prognosen 2001–2031. Teil 1: Bevölkerung und Arbeitskräfte nach Regionen und Bezirken Österreichs. Wien: ÖROK.Google Scholar
  56. Helbich, M. (2008). GIS-basierte multikriterielle Evaluierung des Standortfaktores landschaftliche Attraktivität. Austrian Academy of Sciences, Vienna: Unpublished manuscript.Google Scholar
  57. Helbich, M. (under review). Postsuburban spatial evolution of the Viennese urban fringe: evidence from point process modeling. Submitted to Urban Geography.Google Scholar
  58. Hellberg, H. (1975). Der suburbane Raum als Standort von privaten Dienstleistungseinrichtungen. In ARL (Ed.), Beiträge zum Problem der Suburbanisierung (pp. 123–147). Hannover: Schroedel.Google Scholar
  59. Herold, M., Couclelis, H., & Clarke, K. (2005). The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 29, 369–399.CrossRefGoogle Scholar
  60. Hesse, M. (2001). Mobilität und Verkehr in (Post-) Suburbia–ein Ausblick. RaumPlanung, 95, 65–69.Google Scholar
  61. Huang, Q., & Leung, Y. (2002). Analysing regional industrialisation in Jiangsu province using geographically weighted regression. Journal of Geographical Systems, 4, 233–249.CrossRefGoogle Scholar
  62. Jelinski, D., & Wu, J. (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, 11, 129–140.CrossRefGoogle Scholar
  63. Johnson, M. (2001). Environmental impacts of urban sprawl: a survey of the literature and proposed research agenda. Environment and Planning A, 33, 717–735.CrossRefGoogle Scholar
  64. Kagermeier, A., Miosga, M., & Schussmann, K. (2001). Die Region München—Auf dem Weg zu regionalen Patchworkstrukturen. In K. Brake, J. Dangschat & G. Herfert (Eds.), Suburbanisierung in Deutschland. Aktuelle Tendenzen (pp. 163–173). Opladen: Leske + Budrich.Google Scholar
  65. Keersmaecker, M.-L., Frankhauser, P., & Thomas, I. (2003). Using fractal dimensions for characterizing intra-urban diversity: the example of Brussels. Geographical Analysis, 35, 310–328.CrossRefGoogle Scholar
  66. Kling, R., Olin, S., & Poster, M. (1995a). The Emergence of Postsuburbia: an introduction. In R. Kling, S. Olin & M. Poster (Eds.), Postsuburban California. The transformation of Orange County since World War II (pp. 1–30). Berkley: University of California Press.Google Scholar
  67. Kling, R., Olin, S., & Poster, M. (1995b). Beyond the edge: the dynamism of postsuburban regions. In R. Kling, S. Olin & M. Poster (Eds.), Postsuburban California. The transformation of Orange County since World War II (pp. vii–xx). Berkley: University of California Press.Google Scholar
  68. Kloosterman, R., & Lambregts, B. (2001). Clustering of economic activities in polycentric urban regions: The case of the Randstad. Urban Studies, 38, 717–732.CrossRefGoogle Scholar
  69. Lee, B. (2007). . “Edge” or “edgeless” cities? Urban spatial structure in U.S. metropolitan areas, 1980 to 2000. Journal of Regional Science, 47, 479–515.CrossRefGoogle Scholar
  70. Leung, Y. (1982). Approximate characterization of some fundamental concepts of spatial analysis. Geographical Analysis, 14, 29–40.Google Scholar
  71. Leung, Y. (1987). On the imprecision of boundaries. Geographical Analysis, 19, 125–151.Google Scholar
  72. Lichtenberger, E. (2000). Austria. Society and regions. Vienna: Austrian Academy of Sciences Press.Google Scholar
  73. Lloyd, C., & Shuttleworth, I. (2005). Analysing commuting using local regression techniques: Scale, sensitivity and geographical patterning. Environment and Planning A, 37, 81–103.CrossRefGoogle Scholar
  74. Loibl, W., & Toetzer, T. (2003). Modeling growth and densification processes in suburban regions—simulation of landscape transition with spatial agents. Environmental Modelling & Software, 18, 553–563.CrossRefGoogle Scholar
  75. Madden, J. (2003). Has the concentration of income and poverty among suburbs of large US metropolitan areas changed over time? Papers in Regional Science, 82, 249–275.CrossRefGoogle Scholar
  76. Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.Google Scholar
  77. Malczewski, J., Poetz, A., & Iannuzzi, L. (2004). Spatial analysis of residential burglaries in London, Ontario. The Great Lakes Geographer, 11, 15–27.Google Scholar
  78. McMillen, D., & McDonald, J. (1998). Suburban subcenters and employment density in metropolitan Chicago. Journal of Urban Economics, 43, 157–180.CrossRefGoogle Scholar
  79. Mieszkowski, P., & Mills, E. (1993). The causes of metropolitan suburbanization. Journal of Economic Perspectives, 7, 135–147.Google Scholar
  80. Ning, Y., & Yan, Z. (1995). The changing industrial and spatial structure in Shanghai. Urban Geography, 16, 577–594.CrossRefGoogle Scholar
  81. ÖIEB Österreichisches Institut für Erwachsenenbildung (2004). Motivation und Zufriedenheit von Zuzüglern ins Wiener Umland (Gesamtbericht, Resümee, Empfehlungen). http://www.oieb.at/download/OIEB-Zuzuegler_Zusammenfassung.pdf. Last accessed Nov 13 2008.
  82. Openshaw, S. (1984). The modifiable areal unit problem. Norwich: GeoBooks.Google Scholar
  83. Openshaw, S. (1997). Fuzzy logic, fuzzy systems and soft computing. In S. Openshaw & C. Openshaw (Eds.), Artificial intelligence in geography (pp. 268–308). Chichester: Wiley.Google Scholar
  84. O’Sullivan, D., & Unwin, D. (2003). Geographic information analysis. Hoboken: Wiley.Google Scholar
  85. Petry, F., Robinson, V., & Cobb, M. (2005). Fuzzy modeling with spatial information for geographic problems. Berlin: Springer.CrossRefGoogle Scholar
  86. Robinson, V. (2003). A perspective on the fundamentals of fuzzy sets and their use in geographic information systems. Transactions in GIS, 7, 3–30.CrossRefGoogle Scholar
  87. Rohr-Zänker, R. (1996). Neue Zentrenstrukturen in den USA. Eine Perspektive für dezentrale Konzentration in Deutschland. Archiv für Kommunalwissenschaften, 35, 196–225.Google Scholar
  88. Saaty, T. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9–26.CrossRefGoogle Scholar
  89. Schwanen, T., Frans, M., Dieleman, F., & Dijst, M. (2001). Travel behaviour in Dutch monocentric and policentric urban systems. Journal of Transport Geography, 9, 173–186.CrossRefGoogle Scholar
  90. Sieverts, T. (1998). Zwischenstadt. Zwischen Ort und Welt, Raum und Zeit, Stadt und Land. Braunschweig: Vieweg.Google Scholar
  91. Sieverts, T., Koch, M., Stein, U., & Steinbusch, M. (2005). Zwischenstadt—inzwischen Stadt? Entdecken, begreifen, verändern. Wuppertal: Müller + Busmann.Google Scholar
  92. Soja, E. (1996). Taking Los Angeles apart: towards a postmodern geography. In R. LeGates & F. Stout (Eds.), The city reader (pp. 189–200). London: Routledge.Google Scholar
  93. Soja, E. (2000). Postmetropolis. Critical studies of cities and regions. Oxford: Blackwell.Google Scholar
  94. Soja, E. (2001). Exploring the postmetropolis. In C. Minca (Ed.), Postmodern geography: Theory and praxis (pp. 37–56). Oxford: Blackwell.Google Scholar
  95. Thinh, N. (2003). Contemporary spatial analysis and simulation of the settlement development of the Dresden city region. In A. Gnauck & R. R. Heinrich (Eds.), The information society and enlargement of the European Union. Part 1: concepts and methods (pp. 253–261). Marburg: Metropolis Verlag.Google Scholar
  96. Tomlin, D. (1990). Geographic information systems and cartographic modelling. Englewood Cliffs: Prentice-Hall.Google Scholar
  97. Torrens, P. (2006). Simulating sprawl. Annals of the Association of American Geographers, 96, 248–275.CrossRefGoogle Scholar
  98. Torrens, P. (2008). A toolkit for measuring sprawl. Applied Spatial Analysis and Policy, 1, 5–36.CrossRefGoogle Scholar
  99. Voith, R. (1998). Do suburbs need cities? Journal of Regional Science, 38, 445–464.CrossRefGoogle Scholar
  100. Voogd, J. (1983). Multicriteria evaluation for urban and regional planning. London: Pion.Google Scholar
  101. Voss, P., & Chi, G. (2006). Highways and population change. Rural Sociology, 71, 33–58.CrossRefGoogle Scholar
  102. Wang, F., & Zhou, Y. (1999). Modelling urban population densities in Beijing 1982–90: suburbanisation and its causes. Urban Studies, 36, 271–287.CrossRefGoogle Scholar
  103. Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7, 161–187.CrossRefGoogle Scholar
  104. Wood, G. (2003). Die postmoderne Stadt: Neue Formen der Urbanität im Übergang vom zweiten ins dritte Jahrtausend. In H. Gebhardt, P. Reuber & G. Wolkersdorfer (Eds.), Kulturgeographie. Aktuelle Ansätze und Entwicklungen (pp. 131–147). Heidelberg: Spektrum.Google Scholar
  105. Wrigley, N., Holt, T., Steel, D., & Tranmer, M. (1996). Analysing, modelling and resolving the ecological fallacy. In P. Longley & M. Batty (Eds.), Spatial analysis: Modelling in a GIS environment (pp. 25–40). Cambridge: GeoInformation International.Google Scholar
  106. Yu, D. (2006). Spatially varying development mechanisms in the greater Beijing area: a geographically weighted regression investigation. The Annals of Regional Science, 40, 173–190.CrossRefGoogle Scholar
  107. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.CrossRefGoogle Scholar
  108. Zadeh, L. (1994). Soft computing and fuzzy logic. IEEE Software , 11, 48–56.CrossRefGoogle Scholar
  109. Zimmermann, H.-J. (1987). Fuzzy sets, decision making and expert systems. Dordrecht: Kluwer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute for Urban and Regional ResearchAustrian Academy of SciencesViennaAustria
  2. 2.Department of Geography and AnthropologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations