Energy Efficiency

, Volume 11, Issue 5, pp 1227–1245 | Cite as

Energy savings through additive manufacturing: an analysis of selective laser sintering for automotive and aircraft components

  • Tim HettesheimerEmail author
  • Simon Hirzel
  • Han Byeol Roß
Original Article


The general consensus is that 3D-printing technologies can help to render industrial production more sustainable, e.g. by shortening process chains, allowing more efficient production processes or providing benefits resulting from light-weight construction. This paper aims to quantify the impact of additive manufacturing processes on energy demand by examining selective laser sintering (SLS). To this end, a model is suggested and applied that focuses on three important phases in the life cycle of additively manufactured components and that allows a comparison with conventional manufacturing processes. The three phases considered are the production of the required raw material, the actual manufacturing process of specific components and their utilisation. The analysis focuses on the automotive and aircraft industries. The main factors influencing energy demand are analysed and discussed, and the impact of additive manufacturing is estimated on a national level for a sample component based on Germany as an example. The results indicate that substantial energy savings can be achieved, even though only a small component was replaced.


Additive manufacturing Energy demand model Life cycle analysis Impact assessment Selective laser sintering 


Production of pre-products


specific energy demand for EAF metal smelting and refining [MJ/kg]


specific energy demand for smelting process [MJ/kg]


specific energy demand for casting and processing [MJ/kg]

e4, gas

specific energy demand for the (gas) atomising process [MJ/kg]


material-specific temperature difference [K]


material-specific heat capacity [MJ/(kg·K)]


specific smelting enthalpy [MJ/kg]


mark-up factor for real-world demand [no dimension]


specific energy demand for the conventional production route [MJ/kg]


specific energy demand for the direct additive route [MJ/kg]


specific energy demand for the indirect additive route [MJ/kg]

Fabrication of components


power demand per metal removal [MJ/mm3]


volume of metal block for conventional processes [mm3]


volume of the target component [mm3]


height of the component [mm]


thickness of an additively manufactured layer [mm]


mark-up factor for adjusting to real-world building rate [no dimension]


material specific volume building rate [mm3/s]


power demand for system operation [W]


time for mechanical movements per layer (lifting table, powder distribution) [s]


total time for mechanical movements of lifting table and powder distribution [s]


time for building the component [s]


energy demand for a specific component using additive processes [J]


energy demand for a specific component using conventional processes [J]

Utilisation of the products


annual energy demand for product usage [J/a]


average product life span [a]


pre-factor for alterations in product shape impacting on energy demand [no dimension]


weight difference of additively and conventionally manufactured products [g]


energy demand in utilisation of conventionally produced final product [J]


energy demand in utilisation of an additively produced final product [J]


annual energy savings per unit of weight [J/(a·g)]


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. AGEB (2015). AG Energiebilanzen. Auswertungstabellen zur Energiebilanz der Bundesrepublik Deutschland 1990 bis 2014. Berlin.Google Scholar
  2. Airbus (2015). Airbus in Germany. Online: Accessed: 07.03.2016.
  3. ASTM. (2012). F2792 - 12a: Standard terminology for additive manufacturing technologies. West Conshohocken: ASTM International.Google Scholar
  4. AZO Materials (2014). Titanium alloys—Ti6Al4V grade 5 properties. Online: Accessed 27.01.2016.
  5. Balogun, V. A., & Mativenga, P. T. (2013). Modelling of direct energy requirements in mechanical machining processes. Journal of Cleaner Production, 41, 179–186. CrossRefGoogle Scholar
  6. Baumers, M. (2012). Economic aspects of additive manufacturing: Benefits, costs and energy consumption. Loughborough: Ph.D. thesis, Loughborough University.Google Scholar
  7. Baumers, M., Tuck, C., Hague, R., Ashcroft, I., & Wildman, R. (2010). A comparative study of metallic additive manufacturing power consumption. In: Proceedings of the Solid Freeform Fabrication Symposium 2010, Austin, USA. Vol. 2009, pp. 278–288.Google Scholar
  8. Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., & Hague, R. (2011). Energy inputs to additive manufacturing: Does capacity utilization matter? In: Solid Freeform Fabrication (SFF) Symposium, 6–8 August, Austin, TX, USA.Google Scholar
  9. Bello, M. (2014). New NIST research center helps the auto industry lighten up. Online: Accessed 20.02.2016.
  10. Berger, R. (2013). Additive manufacturing. A game changer for the manufacturing industry? Munich: Roland Berger Strategy Consultants.Google Scholar
  11. Boeing (2006). Aero magazine. Quarter 04 (24). Online: Accessed 04.03.2016.
  12. Bopp, F. (2010). Rapid manufacturing. Zukünftige Wertschöpfungsmodelle durch generative Fertigungsverfahren. Online: Accessed 03.03.2016.
  13. Davis, J. R., American Society for Metals., & ASM Handbook Committee. (1989). Machining. Metals Park: ASM International.Google Scholar
  14. Ducker Worldwide (2014). 2015 North American Light Vehicle Aluminum Content Study. Executive Summary. Online: Accessed 10.03.2017.
  15. EOS (2014). Werkstoffe - EOS Metall-Pulverwerkstoffe. Online: Accessed 08.02.2016.
  16. European Commission. (2011). A roadmap for moving to a competitive low carbon economy in 2050. Brussel: European Commission.Google Scholar
  17. Eurotransport (2017). Technische Daten. Online: Accessed 06.03.2017.
  18. Forsberg, D. (2015). Aircraft retirement and storage trends—economic life analysis reprised and expanded. Ballsbridge: Holdings Limited.Google Scholar
  19. Fraunhofer, I. W. U. (2008). Energieeffizienz in der Produktion. München: Untersuchung zum Handlungs- und Forschungsbedarf.Google Scholar
  20. Gausemeier, J., Echterhoff, N., Kokoschka, M., & Wall, M. (2011). Thinking ahead the future of additive manufacturing. Analysis of promising industries. Paderborn: Study for the Direct Manufacturing Research Center.Google Scholar
  21. Gebhardt, A. (2013). Generative Fertigungsverfahren—additive manufacturing (4th ed.). München: Carl Hanser Verlag. CrossRefGoogle Scholar
  22. Gebler, M., Schoot Uiterkamp, A. J. M., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158–167. CrossRefGoogle Scholar
  23. Grassl, W. (2015). Additive manufacturing. Revolutioniert der 3D-Druck die Supply Chain und das Geschäftsmodell der Unternehmen? Online: Accessed 19.12.2015.
  24. Helms, H., & Lambrecht, U. (2007). The potential contribution of light-weighting to reduce transport energy consumption. International Journal of Life Cycle Assessment, 12(1), 58–64.Google Scholar
  25. Hopkinson, N., & Dicknes, P. (2003). Analysis of rapid manufacturing—using layer manufacturing processes for production. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1), 31–39.Google Scholar
  26. Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J., & Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559–1570.CrossRefGoogle Scholar
  27. Kellens, K. (2013). Energy and resource efficient manufacturing - Unit process analysis and ptimisation. PhD Dissertation, Department of Mechanical Engineering, KU Leuven.Google Scholar
  28. Kempen, K., Thijs, L., van Humbeeck, J., & Kruth, J.-P. (2012). Mechanical properties of AlSi10Mg produced by selective laser melting. Physics Procedia, 39, 439–446. CrossRefGoogle Scholar
  29. Kraftfahrt-Bundesamt (2015a). 14.259 Kilometer: Die jährliche Fahrleistung deutscher Pkw. Pressemitteilung Nr. 15/2015. Online: Accessed 10.03.2017.
  30. Kraftfahrt-Bundesamt (2015b). Bestand nach ausgewählten Fahrzeugklassen mit dem Durchschnittsalter der Fahrzeuge am 1. Januar 2015. Online: Accessed 06.03.2016.
  31. Kraftfahrt-Bundesamt (2016). Anzahl der gemeldeten Pkw in Deutschland in den Jahren 1960 bis 2015, 2016. Online: Accessed 23.02.2016.
  32. Kruzhanov, V., & Arnhold, V. (2013). Energy consumption in powder metallurgical manufacturing. Powder Metallurgy, 55(1), 14–21.CrossRefGoogle Scholar
  33. Le Bourhis, F., Kerbrat, O., Hascoet, J.-Y., & Mognol, P. (2013). Sustainable manufacturing. Evaluation and modeling of environmental impacts in additive manufacturing. The International Journal of Advanced Manufacturing Technology, 69(9–12), 1927–1939. CrossRefGoogle Scholar
  34. Levy, G., Schindel, R., & Kruth, J. P. (2003). Rapid manufacturing and rapid tooling with layer manufacturing technologies, state of the art and future perspectives. CIRP Annals – Manufacturing Technology, 55(2), 539–609.Google Scholar
  35. Luo, Y., Ji, Z., Leu, M. C., Caudill, R. (Eds.) (1999). Environmental performance analysis of solid freedom fabrication processes. In: Electronics and the Environment, 1999. ISEE-1999. Proceedings of the 1999 I.E. International Symposium on. IEEE, 1999. pp. 1–6.Google Scholar
  36. Markets and Markets (2014). Additive manufacturing & material market by technology, by material (plastics, metals, and ceramics), by application, and by geography. Analysis & Forecast to 2014–2020. Pune.Google Scholar
  37. Marquardt, E. (2014). VDI Statusreport September 2014. Additive Fertigungsverfahren. Düsseldorf: VDI-Verlag.Google Scholar
  38. McAlister, C., & Wood, J. (2014). The potential of 3D printing to reduce the environmental impacts of production. In: Proceeding of the ECEEE 2014 Industrial Summer Study, Vol. 72 (pp. 213–221). Accessed 22 Feb 2018.
  39. McCullough, W. P., Graves, R., Hiseada, M., & Webb, C. (2016). Additive manufacturing power consumption. The International Journal of Advanced Manufacturing Technology, 2013, 67(5–8), 1191–1203.Google Scholar
  40. Meindl, M. (2006). Beitrag zur Entwicklung generativer Fertigungsverfahren für das Rapid Manufacturing. Dissertation. Munich.Google Scholar
  41. Mognol, P., Lepicart, D., & Perry, N. (2006). Rapid prototyping: energy and environment in the spotlight. Rapid Prototyping Journal, 12(1), 26–34. CrossRefGoogle Scholar
  42. Morrow, W. R., Qi, H., Kim, I., Mazumder, J., & Skerlos, S. J. (2007). Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15(10), 932–943. CrossRefGoogle Scholar
  43. Müller, A. (2014). Trends in der additiven Fertigung, Teil 2 (Inventor Magazin). Online: Accessed 11.01.2016.
  44. Owens, J. W. (1997). Life-cycle assessment: constraints on moving from inventory to impact assessment. Journal of Industrial Ecology, 1(1), 37–49. CrossRefGoogle Scholar
  45. Schifo, J. F., & Radia, J. T. (2004). Theoretical/best practice energy use in metalcasting operations. Washington, DC: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy.CrossRefGoogle Scholar
  46. Schubert, T., & Weissgärber, T. (2015). Powder metallurgy aluminium components offer lightweight solutions and high volume production. Powder Metallurgy Review, 4, 37–42.Google Scholar
  47. Smith, B. (2003). The Boeing 777. Advanced Materials and Processes, 161(9), 41–44.Google Scholar
  48. Sreenivasan, R., Goel, A., & Bourell, D. L. (2010). Sustainability issues in laser-based additive manufacturing. Physics Procedia, 5, 81–90. CrossRefGoogle Scholar
  49. Statista (2017a). Anzahl der produzierten Lastkraftwagen (Lkw) in Deutschland in den Jahren 2014 bis 2024. Online: Accessed 02.03.2017.
  50. Statista (2017b). Durchschnittliches Gewicht neu zugelassener Personenkraftwagen ausgewählter Hersteller in Europa im Jahr 2014. Online: Accessed 02.03.2017.
  51. Telenko, C., & Seepersad, C. C. (2011). A comparative evaluation of energy consumption of selective laser sintering and injection molding of nylon parts. Rapid Prototyping Journal, 18, 472–481.CrossRefGoogle Scholar
  52. Tuck, C., & Hague, R. (2006) Management and implementation of rapid manufacturing. In:Rapid manufacturing (pp. 159–173). John Wiley & Sons, Ltd.
  53. VDA (2015). Zahlen zur Automobilproduktion im In- und Ausland. Online: Accessed 10.02.2016.
  54. VDI (2014). Additive Fertigungsverfahren. Grundlagen, Begriffe, Verfahrensbeschreibungen. Düsseldorf: VDI-Verlag (VDI-Richtlinie 3405). Online: potenziale-der-neuen-technologie-nutzen. Accessed 02.02.2016.
  55. Wohlers Associates, Inc. (2012). Wohlers Report 2012. Additive manufacturing and 3D printing state of the industry. Annual Worldwide Progress Report. Fort Collins.Google Scholar
  56. Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., Shin, Y.-J., Chu, W. S., & Ahn, S. H. (2014). A comparison of energy consumption in bulk forming, subtractive, and additive processes. Review and case study. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 261–279. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Tim Hettesheimer
    • 1
    Email author
  • Simon Hirzel
    • 1
  • Han Byeol Roß
    • 1
  1. 1.Fraunhofer Institute for Systems and Innovation Research ISIKarlsruheGermany

Personalised recommendations