Advertisement

Energy Efficiency

, Volume 10, Issue 3, pp 639–655 | Cite as

Mo.nalis.a: a methodological approach to identify how to meet thermal industrial needs using already available geothermal resources

  • Delia Evelina Bruno
  • Giuseppe Lombardo
  • Eloisa Di Sipio
  • Antonio Galgaro
  • Stefania D’Arpa
  • Elisa Destro
  • Giuseppe Passarella
  • Emanuele Barca
  • Vito Felice Uricchio
  • Adele Manzella
Original Article

Abstract

Mo.nalis.a is a conceptual model aimed at identifying the most suitable local geothermal sources to match the nearest industrial thermal needs. The methodological approach proposed is based on investigating industrial thermal processes and then identifying suitable geothermal solution plants that match these thermal requirements. The model was tested in Apulia (southern Italy) as a case study for assessing how the methodology could contribute to reducing the use of conventional energy resources for the industrial heat supply sector. The medium thermal needs in Apulia are always higher than 60 °C, and the main strategic industrial processes discussed into this work are “pasta and flour production” “wastewater treatment/sludge digestion” and “swimming pool management”. In order to match these industrial thermal demands, the most suitable proposed plant is the ground water heat pump system, limited to the first 100 m, the depth involved in the heat exchange through vertical probes of model. Finally, Mo.nalis.a identifies the Apulian areas with a possible development of these three activities using geothermal resource: the Foggia province, Murge and Salento sectors.

Keywords

Geothermal heat Industrial thermal needs Energetic model Renewable energy Groundwater and ground source heat pumps 

Notes

Acknowledgments

The present study was performed within the framework of the VIGOR Project, aimed at assessing the geothermal potential and exploring geothermal resources of four regions in southern Italy. VIGOR is part of the activities of the Interregional Programme “Renewable Energies and Energy Savings FESR 2007-2013—Axes I Activity line 1.4 “Experimental Actions in Geothermal Energy.” The authors acknowledge the management of the VIGOR Project, and in particular Dr. Piezzo of Directorate General for Nuclear Energy, Renewable Energy and Energy Efficiency of the Ministry for Economic Development (MiSE-DGENRE) and Dr. Brugnoli, director of National Research Council of Italy, Department of Sciences of the Earth System and Environmental Technologies (CNR-DTA).

References

  1. Abate S., Aldighieri B., Ardizzone F., Barnaba F., Basso A., Botteghi S., Caielli G., Calvi E., Caputi A., Caputo M. C., Cardellicchio N., De Carlo L., Casarano D., Desiderio G., De Franco R., De Leo M., Donato A., Dragone V., Festa V., Giocoli A., Giornetti L., Inversi B., Limoni P., Liotta D., Lollino P., Lombardo G., Manzella A., Masciale R., Minissale M., Montanari D., Montegrossi G., Mussi M., Pagliarulo R., Palladino G., Parise M., Perrone A., Petrullo A., Piemonte C., Piscitelli S., Polemio M., Rizzo E., Romanazzi A., Romano G., Santaloia F., Scrocca D., Trizzino R., Wasowski J.E Zuffianò L.E. (2015). VIGOR: Sviluppo geotermico nella regione Puglia – Studi di Fattibilità a Bari e Santa Cesarea Terme. Progetto VIGOR—Valutazione del Potenziale Geotermico delle Regioni della Convergenza, POI Energie Rinnovabili e Risparmio Energetico 2007–2013, CNR-IGG.Google Scholar
  2. Albanese C., Allansdottir A., Amato L., Ardizzone F., Bellani S., Bertini G., Botteghi S., Bruno D., Caielli G., Caiozzi F., Caputi A., Catalano R., Chiesa S., Contino A., D’Arpa S., De Alteriis G., De Franco R., Dello Buono D., Destro E., Di Sipio E., Donato A., Doveri M., Dragone V., Ellero A., Fedi M., Ferranti L., Florio G., Folino M., Galgaro A., Gennaro C., Gianelli G., Giaretta A., Gola G., Greco G., Iaquinta P., Inversi B., IORIO M., Iovine G., Izzi F., La Manna M., Livani M., Lombardo G., Lopez N., Magnelli D., Maio D., Manzella A., Marchesini I., Martini G., Masetti G., Mercadante A., Minissale A., Montanari D., Montegrossi G., Monteleone S., Muto F., Muttoni G., Norini G., Pellizzone A., Perotta P., Petracchini L., Pierini S., Polemio M., Rizzo E., Russo L., Sabatino M., Santaloia F., Santilano A., Scrocca S., Soleri S., Tansi C., Terranova O., Teza G., Tranchida G., Trumpy E., Uricchio V.E Valenti V. (2014). VIGOR: Sviluppo geotermico nelle Regioni della Convergenza. Progetto VIGOR—Valutazione del Potenziale Geotermico delle Regioni della Convergenza, POI Energie Rinnovabili e Risparmio Energetico 2007–2013, CNR–IGG.Google Scholar
  3. Bakirci, K. (2010). Evaluation of the performance of a ground-source heat-pumpsystem with series GHE (ground heat exchanger) in the cold climate region. Energy, 35(7), 3088–3096.CrossRefGoogle Scholar
  4. Banks, D. (2012). An introduction to thermogeology: ground source heating and cooling (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  5. Barzi, Y. M., & Assadi, M. (2015). Evaluation of a theramosyphon heat pipe operation and application in a waste heat recovery system. Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion. doi: 10.1080/08916152.2014.913089.Google Scholar
  6. Bruno, D. E., Lombardo, G., Gola, G., Galgaro, A., Destro, E., Di Sipio, E., Uricchio, V. F., Manzella, A. (2013). A model proposal for evaluating thermal demand of industrial process to be supplied by low geothermal enthalpy. In: European Geothermal Congress (pp. 1–4). Pisa, Italy.Google Scholar
  7. Bruno, D. E., D’Arpa, S., Uricchio, V. F., Antonicelli, A., Berlingerio, G. E., Chieco, M., Mercurio, A., De Giorgio, G., Piccinno, P. A., Cariglia, M. (2014). Progetto Legend—La filiera della geotermia a bassa entalpia in Apulia: dal caso pilota del progetto Legend in area naturale protetta alle linee di indirizzo per l’efficientamento energetico sostenibile degli edifici. Regione Apulia.Google Scholar
  8. Calise, F., Dentice d’Accadia, M., Macaluso, A., Piacentino, A., & Vanoli, L. (2016). Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water. Energy Conversion and Management, 115, 200–220.CrossRefGoogle Scholar
  9. Calò, G. (1993). Accertamenti Idrogeologici relative al nuovo pozzo Terme ed al nuovo pozzo di monitoraggio. Comune di S.ta Cesarea Terme Lecce, (Rapporto Interno).Google Scholar
  10. Carpentier, J.P. (1974). A review of energy models N.1 and 2, Laxenburg.Google Scholar
  11. Cataldi, R., Monelli, F., Squarci, P., Taffi, L., Zito, G., & Calore, G. (1995). Geothermal ranking of the Italian territory. Geothermics, 2, 115–129.CrossRefGoogle Scholar
  12. Claps, P., Giordano, P., Laguardia, G. (2003). Analisi quantitativa della distribuzione spaziale delle temperature medie in Italia. Working Paper, 2003–02.Google Scholar
  13. Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. A. (2010). Review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082.CrossRefGoogle Scholar
  14. Cotecchia, V., & Magri, G. (1966). Idrogeologia del Gargano. Geol. Appl. e Idrogeol., 1, 1–80.Google Scholar
  15. Cotecchia, V., Tadolini, P., & Tulipano, L. (1983). Sea water intrusion in the planning of graoundwater resources protection and utilization in the Apulian region (Southern Italy). Geol. Appl. e Idrogeol., 18(2), 367–382.Google Scholar
  16. Cotecchia, V., D. Grassi, Polemio, M. (2005). Carbonate aquifers in Apulia and seawater intrusion. Giornale di Geologia Applicata.Google Scholar
  17. Dincer, I., Hussain, M. M., & Al-Zaharnah, I. (2004). Energy and exergy use in public and private sector of Saudi Arabia. Energy Policy, 32, 1615–1624.CrossRefGoogle Scholar
  18. Donatini, F., & Salza, P. (2010). Impianti geotermici. Pisa: Università degli studi di Pisa.Google Scholar
  19. Donato, A., Santilano, A., Lombardo, G., Bruno, D. E. (2013). Quadro normativo ed iter autorizzativi per la ricerca e la coltivazione di risorse geotermiche. Progetto VIGOR “Valutazione del Potenziale geotermico nelle Regioni della Convergenza” (pp. 1–93), Pisa, Italy.Google Scholar
  20. Dowd, A., Boughen, M., Ashworth, N., Carr, P., & Cornish, S. (2011). Geothermal technology in Australia: investigating social acceptance. Energy Policy, 39, 6301–6307.CrossRefGoogle Scholar
  21. EU Roadmap (2011). Mapping renewable energy pathways towards 2020, EREC.Google Scholar
  22. Fleiter, T., Fehrenbach, D., Worrell, E., & Eichhammer, W. (2012). Energy efficiency in the German pulp and paper industry and a model-based assessment of saving potentials. Energy, 40, 84–99.CrossRefGoogle Scholar
  23. Galgaro, A., Di Sipio, E., Destro, E., Chiesa, S., Uricchio, V. F., Bruno, D. E., Masciale, R., Lopez, N., Iaquinta, P., Teza, G., Iovine, G., Montanari, D., Manzella, A., Soleri, S., Greco, R., Di Bella, G., Monteleone, S., Sabatino, M., Iorio, M., Petruccione, E., Giaretta, A., Tranchida, G., Trumpy, E., Gola, G., & D’Arpa, S. (2012). Methodological approach for evaluating the geo-exchange potential: VIGOR Project. Acque Sotterranee, Italian Journal of Groundwater, 1(3), 43–53.CrossRefGoogle Scholar
  24. Galgaro, A., Di Sipio, E., Teza, G., Destro, E., De Carli, M., Chiesa, S., Zarrella, A., Emmi, G., & Manzella, A. (2015). Empirical modeling of maps of geo-exchange potential for shallow geothermal energy at regional scale. Geothermics, 57, 173–184.CrossRefGoogle Scholar
  25. Gude, V. G. (2015). Energy storage for desalination processes powered by renewable energy and waste heat sources. Applied Energy, 137, 877–898.CrossRefGoogle Scholar
  26. Hammond, G. P. (2007). Industrial energy analysis, thermodynamics and sustainability. Applied Energy, 84, 675–700.CrossRefGoogle Scholar
  27. Hoogwijk, M.M. (2004). On the global and regional potential of renewable energy sources. PhD Thesis, Utrecht University.Google Scholar
  28. Huang, J. P., Ang, B. W., & Poh, K. L. (1996). Synthesizing environmental externality costs—a statistical and multi-attribute analysis approach. Energy & Environment, 7, 253–266.CrossRefGoogle Scholar
  29. Izquierdo, S., Dopazo, C., & Fueyo, N. (2010). Supply-cost curves for geographically distributed renewable-energy resources. Energy Policy, 38, 667–672.CrossRefGoogle Scholar
  30. Kottick, D., Balu, M., & Edelstein, D. (1993). Battery energy storage for frequency regulation in an island power system. IEEE Trans. On Energy Conversion, 144(1), 1905–1913.Google Scholar
  31. Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., & Canizeras, C. (2004). Definition and classification of power system stability. IEEE Trans. On Power System, 19(2), 1384–1401.Google Scholar
  32. Maggiore, M., & Pagliarulo, P. (2004). Circolazione idrica ed equilibri idrogeologici negli acquiferi della Apulia. Geologi e Territorio, 1, 13–35.Google Scholar
  33. Massimiliano, M., Paola, C., & Gaia, C. (2011). Paradigm shift in urban energy systems through distributed generation: methods and models. Applied Energy, 88(4), 1032–1048.CrossRefGoogle Scholar
  34. Mongelli, F., & Ricchetti, G. (1970a). Heat flow along the Candelaro fault, Gargano headland (Italy). Geothermics, 2, 450–458.CrossRefGoogle Scholar
  35. Omer, A. M. (2008). Ground-source heat pumps systems and applications. Renewable and Sustainable Energy Reviews, 12(2), 344–371.CrossRefGoogle Scholar
  36. Polemio, M., Di Cagno, M., & Virga, R. (2000). Le acque sotterranee del Gargano: risorse idriche intergrative e di emergenza. Acque Sotterranee, 68, 35–41.Google Scholar
  37. Polemio, M., Limoni, P.P., Liotta, D., Palladino, G., Zuffianò, L.E., Santaloia, F. (2014) A peculiar case of coastal springs and geogenic saline Groundwater. In: 23nd Salt Water Intrusion Meeting, (p. 301–304). Husum, Germany.Google Scholar
  38. Sametinger, K. (2009). How to invest in geothermal. Renew. Energy Focus, January/February, 84–87.Google Scholar
  39. Self, S. J., Reddy, B. V., & Rosen, M. A. (2013). Geothermal heat pump systems: status review and comparison with other heating options. Applied Energy, 101, 341–348.CrossRefGoogle Scholar
  40. Tempesti, D., Manfrida, G., & Fiaschi, D. (2012). Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy. Applied Energy, 97, 609–617.CrossRefGoogle Scholar
  41. Van Gool, W. (1992). Exergy analysis of industrial processes. Energy, 17, 791–803.MathSciNetCrossRefGoogle Scholar
  42. Verrone, A., & Bruno R. (2008), Sistemi per la climatizzazione mediante pompe di calore geotermiche e pali energetici. Tesi di laurea, Università di Bologna, Bologna, 2008/2009.Google Scholar
  43. Younger, P. L. (2015). Geothermal energy: delivering on the global potential. Energies. doi: 10.3390/en81011737.Google Scholar
  44. Zarlenga, F. (2011). Le possibilità di utilizzo della risorsa geotermica a bassa e media entalpia per la sostenibilità della produzione energetica. EAI, Energia, Ambiente, Innovazione, 3, 31–40.Google Scholar
  45. Zhou, P., Ang, B. W., & Poh, K. L. (2006). Decision analysis in energy and environmental modelling. An update. Energy, 31, 2604–2622.Google Scholar
  46. Zuffianò, L.E., Palladino, G., Santaloia, F., Polemio, M., Liotta, D., Limoni, P.P., Parise, M., Pepe, M., Casarano, D., Rizzo, E., Minissale, A., De Franco, R. (2013). Geothermal resource in a foreland environment: the Santa Cesarea Terme thermal springs (Southern Italy). In: European Geothermal Congress (pp. 101–104). Pisa, Italy.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Delia Evelina Bruno
    • 1
  • Giuseppe Lombardo
    • 2
  • Eloisa Di Sipio
    • 3
  • Antonio Galgaro
    • 4
    • 5
  • Stefania D’Arpa
    • 1
  • Elisa Destro
    • 5
  • Giuseppe Passarella
    • 1
  • Emanuele Barca
    • 1
  • Vito Felice Uricchio
    • 1
  • Adele Manzella
    • 6
  1. 1.IRSA-CNR, UOS di BariBariItaly
  2. 2.IPCF-CNRMessinaItaly
  3. 3.GeoCentre of Northern BavariaFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  4. 4.IGG-CNRPadovaItaly
  5. 5.Dipartimento di GeoscienzeUniversità di PadovaPadovaItaly
  6. 6.IGG-CNRPisaItaly

Personalised recommendations