Energy Efficiency

, Volume 10, Issue 2, pp 441–457 | Cite as

Drivers and barriers to the diffusion of energy-efficient technologies—a plant-level analysis of the German steel industry

  • Marlene Arens
  • Ernst Worrell
  • Wolfgang Eichhammer
Original Article


The paper aims at explaining why large-scale energy-intensive industries—here the German iron and steel industry—had a period of slow uptake of major energy-efficient technologies from the mid 1990s to mid 2000s (Arens and Worrell, 2014) and why from the mid 2000s onwards these technologies are increasingly implemented again. We analyze the underlying factors and investment/innovation behavior of individual firms in the German iron and steel industry to better understand barriers and drivers for technological change. The paper gives insights on the decision-making process on energy efficiency in firms and helps to understand how policy affects decision-making. We use a mixed method approach. First, we analyze the diffusion of three energy-efficient technologies (EET) for primary steelmaking from their introduction until today (top-pressure recovery turbine (TRT), basic oxygen furnace gas recovery (BOFGR), and pulverized coal injection (PCI)). We derive the uptake of these technologies both at the national level and at the level of the individual firm. Second, we analyze the impact of drivers and barriers on the decision-making process of individual firms whether or not they want to implement these technologies. Economics and access to capital are the foremost barriers to the uptake of an EET. If the expected payback period exceeds a certain value or if the company lacks capital, investments in EET seem not to happen. But even if an EET is economically viable and the company has access to capital, investments in EET might not be realized. Policy-induced prices might have strengthened the recent diffusion of TRT. We found indications that in a limited number of cases, policy intervention was a driving factor. Technical risks and imperfect information are only marginal factors in our cases. Site-specific factors seem to be important, as site-specific factors shape the economics of the selected EET.


Diffusion Drivers Barriers Energy efficiency Iron and steel industry 



The authors would like to thank Tobias Fleiter for his valuable remarks. Also, we appreciate the good collaboration with the Steelinstitue VDEh especially with H.-B. Lüngen, M. Sprecher, and R. Hömann.


  1. Apeaning, R. W., & Thollander, P. (2013). Barriers to and driving forces for industrial energy efficiency improvements in African industries—a case study of Ghana’s largest industrial area. Journal of Cleaner Production, 53(0), 204–213.CrossRefGoogle Scholar
  2. ArcelorMittal. (2012). Leading from the top. The reuse of high pressure flue gas from the top of the blast furnace is reducing Arcelormittal’s carbon footprint—and our energy bill! Accessed 20 Oct 2015.
  3. ArcelorMittal. (2014a). The company history—site Ruhrort. Accessed 20 Oct 2015.
  4. ArcelorMittal. (2014b). The company history—site Bremen. Accessed 20 Oct 2015.
  5. Arens, M., & Worrell, E. (2014). Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption. Energy, 73(0), 968–977.CrossRefGoogle Scholar
  6. Arens, M., Worrell, E., & Schleich, J. (2012). Energy intensity development of the German iron and steel industry between 1991 and 2007. Energy, 45(1), 786–797.CrossRefGoogle Scholar
  7. Backlund, S., Thollander, P., Palm, J., & Ottosson, M. (2012). Extending the energy efficiency gap. Energy Policy, 51(0), 392–396.CrossRefGoogle Scholar
  8. Brauer, H. (Ed.) (1996). Produktions- und produktintegrierter Umweltschutz. In: Handbuch des Umweltschutzes und der Umweltschutztechnik (in German). Vol. 2. Berlin, Heidelberg: Springer.Google Scholar
  9. Brunke, J.-C., Johansson, M., & Thollander, P. (2014). Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. Journal of Cleaner Production, 84(0), 509–525.CrossRefGoogle Scholar
  10. Bundesamt für Wirtschaft und Ausfuhrkontrollen (BAFA). (2016). Drittlandssteinkohlepreise frei Deutsche Grenze (in German). Eschborn. Accessed 03 Jun 2016.
  11. Bundesamt für Wirtschaft und Ausfuhrkontrollen (BAFA). (2014). Durch die Besondere Ausgleichsregelung in 2014 begünstigte Abnahmestellen (in German). Accessed 20 Oct 2015.
  12. Bundesministerium für Justiz und Verbraucherschutz (BMJV). (2014a). Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (in German). Accessed 20 Oct 2015.
  13. Bundesministerium für Justiz und Verbraucherschutz (BMJV). (2014b). Energiesteuergesetz (in German). Accessed 20 Oct 2015.
  14. Bundesministerium für Justiz und Verbraucherschutz (BMJV). (2014c). Gesetz für den Ausbau Erneuerbarer Energien (in German). Accessed 20 Oct 2015.
  15. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU). (2006). Nationaler Allokationsplan 2008–2012 für die Bundesrepublik Deutschland (in German). Accessed 20 Oct 2015.
  16. Bundesministerium für Wirtschaft und Energie (BMWi). (2016). Gesamtausgabe der Energiedaten – Datensammlung des BMWi. Letzte Akutalisierung 19.05.2015. Accessed 03 Jun 2016.
  17. Cagno, E., Worrell, E., Trianni, A., & Pugliese, G. (2013). A novel approach for barriers to industrial energy efficiency. Renewable and Sustainable Energy Reviews, 19(0), 290–308.CrossRefGoogle Scholar
  18. Deutsche Emissionshandelsstelle (DEHSt). (2015). Strompreiskompensation – Hintergrund (in German).;jsessionid = A37B66FA0611E0CC5A8C7634D2F38A84.2_cid331. Accessed 20 Oct 2015.
  19. Fleiter, T., Hirzel, S., & Worrell, E. (2012a). The characteristics of energy-efficiency measures—a neglected dimension. Energy Policy, 51(0), 502–513.CrossRefGoogle Scholar
  20. Fleiter, T., Schleich, J., & Ravivanpong, P. (2012b). Adoption of energy-efficiency measures in SMEs—an empirical analysis based on energy audit data from Germany. Energy Policy, 51(0), 863–875.CrossRefGoogle Scholar
  21. Fleiter, T., Worrell, E., & Eichhammer, W. (2011). Barriers to energy efficiency in industrial bottom-up energy demand models—a review. Renewable and Sustainable Energy Reviews, 15(6), 3099–3111.CrossRefGoogle Scholar
  22. Gläser, J., & Laudel, G. (2010). Experteninterviews und qualitative Inhaltsanalyse als Instrumente rekonstruierender Untersuchungen (in German) (4th ed.). Wiesbaden: VS Verlag für Sozialwissenschaften.CrossRefGoogle Scholar
  23. Harris, J., Anderson, J., & Shafron, W. (2000). Investment in energy efficiency: a survey of Australian firms. Energy Policy, 28(12), 867–876.CrossRefGoogle Scholar
  24. Hirst, E., & Brown, M. A. (1990). Closing the efficiency gap: barriers to the efficient use of energy. Resources, Conservation and Recycling, 267–281.Google Scholar
  25. International Energy Agency (IEA). (2016). Energy statistics of OECD countries. Paris.Google Scholar
  26. Levine, M. D., Koomey, J. G., McMahon, J. E., & Sanstad, A. H. (1995). Energy efficiency policy and market failures. Annual Review of Energy and the Environment, 535–555.Google Scholar
  27. Lise, W., & Kruseman, G. (2008). Long-term price and environmental effects in a liberalised electricity market. Energy Economics, 30(2), 230–248.CrossRefGoogle Scholar
  28. Marion, M. (2009). Development of the production and use of converter gas at Saarstahl AG. Stahl und Eisen, 7, 61–67.Google Scholar
  29. Newbery, D. M. (2001). Economic reform in Europe: integrating and liberalizing the market for services. Utilities Policy, 10, 85–97.CrossRefGoogle Scholar
  30. Newbery, D. M. (2002). European deregulation, problems of liberalising the electricity industry. European Economic Review, 46, 919–927.CrossRefGoogle Scholar
  31. Okazaki, T., & Yamaguchi, M. (2011). Accelerating the transfer and diffusion of energy saving technologies steel sector experience—lessons learned. Energy Policy, 39(3), 1296–1304.CrossRefGoogle Scholar
  32. Pollitt, M. G. (2012). The role of policy in energy transitions: lessons from the energy liberalisation era. Energy Policy, 50(0), 128–137.CrossRefGoogle Scholar
  33. Remus, R., Monsonet, M. A. A., Roudier, S., & Sancho, L. D. (2013). Best Available Techniques (BAT) reference document for iron and steel production—industrial emissions directive 2010/75/EU (Integrated Pollution Prevention and Control). Luxembourg: Publications Office of the European Union. Accessed 20 Oct 2015.
  34. Reuters. (2012). S&P cuts ArcelorMittal to ‘BB+’. Accessed 20 Oct 2015.
  35. Rogers, E. (2003). Diffusion of innovations (5th ed.). New York: Free Press.Google Scholar
  36. Rohdin, P., & Thollander, P. (2006). Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden. Energy, 31(12), 1836–1844.CrossRefGoogle Scholar
  37. Rosenberg, A., Schopp, A., Neuhoff, K., & Vasa, A. (2011). Impact of reductions and exemptions in energy taxes and levies on German industry. CPI Brief. = Accessed 20 Oct 2015.
  38. Sardianou, E. (2008). Barriers to industrial energy efficiency investments in Greece. Journal of Cleaner Production, 16(13), 1416–1423.CrossRefGoogle Scholar
  39. Schott, R., Malek, C., & Schott, H.-K. (2012). Effizienzsteigerung des Reduktionsmitteleinsatzes im Hochofen zur CO2-Minderung und Kostenersparnis (in German). Chemie Ingenieur Technik 84(7), 1076–1084.Google Scholar
  40. Siemens. (2013). Entspannungsturbine von Siemens – VEO in Eisenhüttenstadt gewinnt Strom aus Gichtgas (in German). Accessed 20 Oct 2015.
  41. Sorrell, S., Schleich, J., Scott, S., O’Malley, E., Trace, F., Boede, U. et al. (2000). Reducing barriers to energy efficiency in public and private organizations. Brighton, UK.Google Scholar
  42. Statistisches Bundesamt (Destatis). (2013). BIP-Deflator. Wiesbaden.Google Scholar
  43. Statistisches Bundesamt (Destatis). (2016). Preise – Daten zur Energiepreisentwicklung. Lange Reihen von Januar 2000 bis April 2016. Wiesbaden. = publicationFile. Accessed 03 Jun 2016.
  44. Steelinstitute VDEh. (2005–2010). CO 2 -Monitoring-Fortschrittsberichte der Stahlindustrie (in German). Düsseldorf.Google Scholar
  45. Steelinstitute VDEh. (2013). Plantfacts database. Düsseldorf.Google Scholar
  46. Sutherland, R. J. (1991). Market barriers to energy-efficiency investments. The Energy Journal, 12(3), 15–34.CrossRefGoogle Scholar
  47. Sutherland, R. J. (1996). The economics of energy conservation policy. Energy Policy, 24(4), 361–370.CrossRefGoogle Scholar
  48. Thollander, P., Danestig, M., & Rohdin, P. (2007). Energy policies for increased industrial energy efficiency: evaluation of a local energy programme for manufacturing SMEs. Energy Policy, 35(11), 5774–5783.CrossRefGoogle Scholar
  49. Thollander, P., Karlsson, M., Søderstrøm, M., Creutz, D. (2005). Reducing industrial energy costs through energy-efficiency measures in a liberalized European electricity market: case study of a Swedish iron foundry. Applied Energy 81(2), 115–126.Google Scholar
  50. Thollander, P., & Ottosson, M. (2008). An energy efficient Swedish pulp and paper industry: exploring barriers to and driving forces for cost-effective energy efficiency investments. Energy Efficiency 1(1), 21–34.Google Scholar
  51. Trianni, A., & Cagno, E. (2012). Dealing with barriers to energy efficiency and SMEs: some empirical evidences. Energy, 37(1), 494–504.CrossRefGoogle Scholar
  52. Trianni, A., Cagno, E., & Worrell, E. (2013). Innovation and adoption of energy efficient technologies: an exploratory analysis of Italian primary metal manufacturing SMEs. Energy Policy, 61(0), 430–440.CrossRefGoogle Scholar
  53. Umweltbundesamt (UBA). (2013). Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 bis 2012. Dessau-Roßlau. Accessed 03 Jun 2016.
  54. Verein der Kohlenimporteure (VDKI). (2004–2015). Jahresberichte 2004–2015 (in German). Hamburg. Accessed 03 Jun 2016.
  55. Worldbank. (2016). GDP-Deflator. Accessed 03 Jun 2016.
  56. Ziesing, H.-J., Enßlin, C., & Langniß, O. (2001). Stand der Liberalisierung der Energiewirtschaft in Deutschland – Auswirkungen auf den Strom aus Erneuerbaren Energiequellen. FVS Themen, 144–150.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Fraunhofer Institute for Systems and Innovation Research (ISI)KarlsruheGermany
  2. 2.Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtNetherlands

Personalised recommendations