Energy Efficiency

, Volume 9, Issue 4, pp 847–860 | Cite as

Evidence of an indirect rebound effect with reversible heat pumps: having air conditioning but not using it?

  • Maxime Raynaud
  • Dominique Osso
  • Bernard Bourges
  • Bruno Duplessis
  • Jérôme Adnot
Original Article

Abstract

Regional energy efficiency programmes are of particular interest as they tackle local constraints which are not always targeted by national energy policy. Within this framework, an energy efficiency programme for existing dwellings has been implemented in a southern European region, providing financial incentives for a combination of energy efficiency actions (heat pump combined with insulation and/or solar water heater). Ex-post evaluation results of this pilot programme are reported in this study. More than 200 households were surveyed regarding their individual energy consumption as well as house and household characteristics. Likewise, the survey highlights household behaviours concerning both space heating and air conditioning, before and after refurbishment. A 3-year billing analysis is used to calculate the energy savings attributed to the operation. Evaluations are carried out taking into account critical parameters like climate differences between years or direct (enhanced space heating comfort) and indirect (use of air conditioning) rebound effects via a statistical model. Moreover, an uncertainty assessment of energy savings was realized on the basis of three scenarios (low, median and high). This study is particularly focused on the use of air conditioning by households, data rarely found in the literature, whereas the consumption linked to air conditioning should increase in the residential sector especially in southern regions. These results help in answering questions about the installation of heat pumps in existing single-family houses with respect to energy savings as well as direct and indirect rebound effects.

Keywords

Energy efficiency programme Single-family house Reversible heat pump Ex-post evaluation Energy savings Uncertainty assessment Direct and indirect rebound effects 

References

  1. Arrêté 17 octobre. (2012). Arrêté du 17 octobre 2012 modifiant la méthode de calcul 3CL-DPE introduite par l'arrêté du 9 novembre 2006 portant approbation de diverses méthodes de calcul pour le diagnostic de performance énergétique en France métropolitaine. Journal officiel de la République française, 0262.Google Scholar
  2. Aste, N., Buzzetti, M., Caputo, P., & Manfren, M. (2014). Local energy efficiency programs: a monitoring methodology for heating systems. Sustainable Cities and Society, 13, 69–77.CrossRefGoogle Scholar
  3. Berkhout, P. H. G., Muskens, J. C., & Velthuijsen, J. W. (2000). Defining the rebound effect. Energy Policy, 28, 425–432.CrossRefGoogle Scholar
  4. Blackhurst, M., Azevedo, I. L., Matthews, H. S., & Hendrickson, C. T. (2011). Designing building energy efficiency programs for greenhouse gas reductions. Energy Policy, 39, 5269–5279.CrossRefGoogle Scholar
  5. Boßmann, T., Eichhammer, W., & Elsland, R. (2012). Concrete paths of the European Union to the 2°C scenario: achieving the climate protection targets of the EU by 2050 through structural change, energy savings and energy efficiency technologies. Project Number: 405/2010, FKZ: UM 10 41 913. Fraunhofer Institute for Systems and Innovation Research ISI.Google Scholar
  6. Broc, J.-S. (2006). L'evaluation ex-post des opérations locales de maitrise de la demande en énergie. Etat de l'art, méthodes bottom-up, exemples appliqués et approche du développement d'une culture pratique de l'évaluation. PhD Thesis. MINES ParisTech.Google Scholar
  7. CEREN. (2009). Consommation moyenne d'énergie régionale par usage. Exploitation particulière de l'Enquête Logement 2006. Etude 8107.Google Scholar
  8. CEREN. (2013). Secteur Résidentiel – Bilan avancé des consommations d’énergie de 2012. Etude 2103.Google Scholar
  9. Chakravarty, D., Dasgupta, S., & Roy, J. (2013). Rebound effect: how much to worry? Current Opinion in Environmental Sustainability, 5, 216–228.CrossRefGoogle Scholar
  10. Chitnis, M., Sorrell, S., Druckman, A., Firth, S. K., & Jackson, T. (2014). Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups. Ecological Economics, 106, 12–32.CrossRefGoogle Scholar
  11. COSTIC. (2014). Ressources techniques et réglementaires. Service Degrés-Jours-Unifiés. Le COSTIC publie les Degrés-Jours Unifiés (DJU). http://www.costic.com/ressources-techniques-et-reglementaires/service-degres-jours-unifies.
  12. Day, A. R. (1999). An investigation into the estimation and weather normalisation of energy consumption in buildings using degree-days. PhD Thesis. South Bank University.Google Scholar
  13. EDF. (2010). Accompagnement économique de Meuse et Haute-Marne. Laboratoire ANDRA de Bure-Saudron. Rapport d'activités 2010. http://energie.edf.com.
  14. EDF. (2014). Sécurisation de l’alimentation électrique. http://www.enbrin.fr.
  15. Ehrhardt-Martinez, K., & John, A. (2010). Rebound, technology and people: mitigating the rebound effect with energy-resource management and people-centered initiatives. 2010 ACEEE Summer Study on Energy Efficiency in Buildings, 7–76. Pacific Grove, United States.Google Scholar
  16. Galvin, R. (2014). Making the ‘rebound effect’ more useful for performance evaluation of thermal retrofits of existing homes: defining the ‘energy savings deficit’ and the ‘energy performance gap’. Energy and Buildings, 69, 515–524.CrossRefGoogle Scholar
  17. Gram-Hanssen, K., Christensen, T. H., & Petersen, P. E. (2012). Air-to-air heat pumps in real-life use: are potential savings achieved or are they transformed into increased comfort? Energy and Buildings, 53, 64–73.CrossRefGoogle Scholar
  18. Greening, L., Greene, D. L., & Difiglio, C. (2000). Energy efficiency and consumption—the rebound effect—a survey. Energy Policy, 28, 389–401.CrossRefGoogle Scholar
  19. Guerra, A.-I., & Sancho, F. (2010). Rethinking economy-wide rebound measures: an unbiased proposal. Energy Policy, 38, 6684–6694.CrossRefGoogle Scholar
  20. Haas, R., & Biermayr, R. (2000). The rebound effect for space heating: empirical evidence from Austria. Energy Policy, 28, 403–410.CrossRefGoogle Scholar
  21. Hengstenberg, J. (2014). Evaluating savings from boiler replacement. Berlin: International Energy Program Evaluation Conference- IEPPEC.Google Scholar
  22. Hong, S. H., Oreszczyn, T., Ridley, I., & The Warm Front Study Group. (2006). The impact of energy efficient refurbishment on the space heating fuel consumption in English dwellings. Energy and Buildings, 38, 1171–1181.CrossRefGoogle Scholar
  23. Laurent, M.-H., Allibe, B., Oreszczyn, T., Hamilton, I., Tigchelaar, C., & Galvin, R. (2013). Back to reality: how domestic energy efficiency policies in four European countries can be improved by using empirical data instead of normative calculation. France: ECEEE Summer Study. Presqu'île de Gien.Google Scholar
  24. Météo Climat. (2011). Moyennes 1981/2010 France. http://meteo-climat-bzh.dyndns.org/listenormale-1981-2010-1-p67.php. Paris, France: Météo Climat.
  25. Nauleau, M.L. (2014). Free-riding on tax credits for home insulation in France: an econometric assessment using panel data. Berlin: International Energy Program Evaluation Conference - IEPPEC.Google Scholar
  26. Raynaud, M., Bourges, B., Osso, D., Duplessis, B. & Adnot, J. (2014). Bottom-up statistical analysis of the energy consumption of French single-family dwellings. Working paper. <hal-01133743>. http://hal-mines-nantes.archives-ouvertes.fr/hal-01133743.
  27. Raynaud, M., Osso, D., Adnot, J., Bourges, B., & Duplessis, B. (2012). An energy efficiency program analysis to understand the gaps between ex-ante and ex-post evaluations. Rome: International Energy Program Evaluation Conference - IEPEC.Google Scholar
  28. Raynaud, M. (2014). Evaluation ex-post de l’efficacité de solutions de rénovation énergétique en résidentiel. PhD Thesis. MINES ParisTech.Google Scholar
  29. Rosenow, J., & Galvin, R. (2013). Evaluating the evaluations: evidence from energy efficiency programmes in Germany and the UK. Energy and Buildings, 62, 450–458.CrossRefGoogle Scholar
  30. Saunders, H. (2013). Is what we think of as “rebound” really just income effects in disguise? Energy Policy, 57, 308–317.MathSciNetCrossRefGoogle Scholar
  31. Scheer, J., Clancy, M., & Ní Hógáin, S. (2013). Quantification of energy savings from Ireland’s Home Energy Saving scheme: an ex post billing analysis. Energy Efficiency, 6, 35–48.CrossRefGoogle Scholar
  32. Sorrell, S. (2007). The rebound effect: an assessment of evidence for economy-wide energy savings form improved energy efficiency. Technology and Policy Assessment function, UK Energy Research Centre. ISBN 1-903144-0-35.Google Scholar
  33. Sorrell, S., & Dimitropoulos, J. (2008). The rebound effect: microeconomic definitions, limitations and extensions. Ecological Economics, 65, 636–649.CrossRefGoogle Scholar
  34. Sorrell, S. (2009). The evidence for direct rebound effects. In Energy efficiency and sustainable consumption: the rebound effect. Horace Herring and Steve Sorrell (eds.). New York, NY: Palgrave Macmillan (St. Martin’s Press).Google Scholar
  35. Sorrell, S., Dimitropoulos, J., & Sommerville, M. (2009). Empirical estimates of the direct rebound effect: a review. Energy Policy, 37, 1356–1371.CrossRefGoogle Scholar
  36. Stern, F., & Vantzis, D. (2014). Protocols for evaluating energy efficiency—both sides of the Atlantic. Berlin: International Energy Program Evaluation Conference - IEPPEC.Google Scholar
  37. Suerkemper, F., Thomas, S., Osso, D., & Baudry, P. (2012). Cost-effectiveness of energy efficiency programmes—evaluating the impacts of a regional programme in France. Energy Efficiency, 5, 121–135.CrossRefGoogle Scholar
  38. Sunikka-Blank, M., & Galvin, R. (2012). Introducing the prebound effect: the gap between performance and actual energy consumption. Building Research and Information, 40, 260–273.CrossRefGoogle Scholar
  39. TecMarket, et al. (2004). The California Evaluation Framework. Last Revision: January 2006. Project number: K2033910.Google Scholar
  40. Thomas, B. A., & Azevedo, I. L. (2013). Estimating direct and indirect rebound effects for U.S. households with input–output analysis part 1: theoretical framework. Ecological Economics, 86, 199–210.CrossRefGoogle Scholar
  41. Valentová, M., & Bertoldi, P. (2011). Evaluation of the green building programme. Energy and Buildings, 43, 1875–1883.CrossRefGoogle Scholar
  42. Vine, E., Hall, N., Keating, K. M., Kushler, M., & Prahl, R. (2013). Emerging evaluation issues: persistence, behavior, rebound, and policy. Energy Efficiency, 6, 329–339.CrossRefGoogle Scholar
  43. Violette, D. M., & Vantzis, D. (2014). Building confidence in meeting energy efficiency targets—addressing free riders and additionality. Berlin: International Energy Program Evaluation Conference - IEPPEC.Google Scholar
  44. JCGM/WG1 (Working Group 1 of the Joint Committee for Guides in Metrology). (2008). Evaluation of measurement data—guide to the expression of uncertainty in measurement. Guide JCGM 100: 2008 (E).Google Scholar
  45. Yu, B., Zhang, J., & Fujiwara, A. (2013). Evaluating the direct and indirect rebound effects in household energy consumption behavior: a case study of Beijing. Energy Policy, 57, 441–453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Maxime Raynaud
    • 1
    • 2
  • Dominique Osso
    • 2
  • Bernard Bourges
    • 3
  • Bruno Duplessis
    • 1
  • Jérôme Adnot
    • 1
  1. 1.MINES ParisTechParis Cedex 06France
  2. 2.EDF R&DMoret-sur-Loing CedexFrance
  3. 3.Ecole des Mines de NantesNantesFrance

Personalised recommendations