Energy Efficiency

, Volume 8, Issue 4, pp 809–814 | Cite as

Nonintrusive load monitoring (NILM) performance evaluation

A unified approach for accuracy reporting
Short Communication

Abstract

Nonintrusive load monitoring (NILM), sometimes referred to as load disaggregation, is the process of determining what loads or appliances are running in a house from analysis of the power signal of the whole-house power meter. As the popularity of NILM grows, we find that there is no consistent way the researchers are measuring and reporting accuracies. In this short communication, we present a unified approach that would allow for consistent accuracy testing.

Keywords

Load disaggregation Accuracy Energy conservation Smart grid 

Notes

Acknowledgments

Research partly supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Graphics, Animation, and New Media Network of Centres of Excellence (GRAND NCE) of Canada.

Supplementary material

References

  1. Author Name (2014). Commented out for double-blind review.Google Scholar
  2. Berges, M.E., Goldman, E., Matthews, H.S., Soibelman, L. (2010). Enhancing electricity audits in residential buildings with nonintrusive load monitoring. Journal of Industrial Ecology, 14(5), 844–858.CrossRefGoogle Scholar
  3. Chang, H.H., Lin, C.L., Lee, J.K. (2010). Load identification in nonintrusive load monitoring using steady-state and turn-on transient energy algorithms. In 2010 14th International Conference on Computer Supported Cooperative Work in Design (CSCWD), (pp. 27–32).Google Scholar
  4. Dong, H., Wang, B., Lu, C.T. (2013). Deep sparse coding based recursive disaggregation model for water conservation. In Proceedings of the Twenty-Third international joint conference on Artificial Intelligence (pp. 2804–2810): AAAI Press.Google Scholar
  5. Figueiredo, M, de Almeida, A., Ribeiro, B. (2012). Home electrical signal disaggregation for non-intrusive load monitoring (nilm) systems. Neurocomputing, 96(0), 66–73.CrossRefGoogle Scholar
  6. Johnson, M.J., & Willsky, A.S. (2013). Bayesian nonparametric hidden semi-markov models. The Journal of Machine Learning Research, 14(1), 673–701.MathSciNetMATHGoogle Scholar
  7. Kim, H., Marwah, M., Arlitt, M., Lyon, G., Han, J. (2010). Unsupervised disaggregation of low frequency power measurements. In 11th International Conference on Data Mining (pp. 747–758).Google Scholar
  8. Kolter, J., & Johnson, M. (2011). Redd: A public data set for energy disaggregation research. In Workshop on Data Mining Applications in Sustainability (SIGKDD) San Diego, CA.Google Scholar
  9. Kolter, J.Z., & Jaakkola, T. (2012). Approximate inference in additive factorial hmms with application to energy disaggregation. In International Conference on Artificial Intelligence and Statistics (pp. 1472–1482).Google Scholar
  10. Liu, H., & Motoda, H. (1998). Feature selection for knowledge discovery and data mining: Springer.Google Scholar
  11. Makonin, S. (2014). Real-time embedded low-frequency load disaggregation. Ph.D. thesis, Simon Fraser University, School of Computing Science.Google Scholar
  12. Makonin, S., Bajic, I.V., Popowich, F. (2014). Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring (NILM). In 2nd International Workshop on Non-Intrusive Load Monitoring.Google Scholar
  13. Makonin, S., Popowich, F., Bartram, L., Gill, B., Bajic, I.V. (2013). AMPds: a public dataset for load disaggregation and eco-feedback research. In 2013 IEEE Electrical Power and Energy Conference (EPEC) (pp. 1–6).Google Scholar
  14. Parson, O., Ghosh, S., Weal, M., Rogers, A. (2012). Non-intrusive load monitoring using prior models of general appliance types. In AAAI Conference on Artificial Intelligence.Google Scholar
  15. Tsai, M.S., & Lin, Y.H. (2012). Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation. Applied Energy, 96(0), 55–73.CrossRefGoogle Scholar
  16. Zeifman, M., & Roth, K. (2011). Nonintrusive appliance load monitoring: Review and outlook. IEEE Transactions on Consumer Electronics, 57(1), 76–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations