Advertisement

Energy Efficiency

, Volume 8, Issue 1, pp 1–17 | Cite as

Trends in energy performance of the Swedish pulp and paper industry: 1984–2011

  • Christian StenqvistEmail author
Original Article

Abstract

The Swedish pulp and paper industry accounts for half of industrial final energy use in Sweden and 2.3 % in EU-27. On the basis of a disaggregated set of physical production data, a Logarithmic Mean Divisia Index decomposition method is applied to disentangle the influence from activity, structure and energy efficiency improvement (EEI) on its fuel, electricity and primary energy use. An extended analysis tracks the fossil energy use and carbon dioxide (CO2) emissions to discern past and present developments of industrial decarbonisation. In 1984–2011, the total production output increased by 49 %, whereas growth in primary energy use was limited to 26 %. Compared with an activity-based scenario, 50 PJ of primary energy use has been avoided through EEI and 6 PJ through structural change. The production has become oriented towards more electricity-intensive but less fuel-intensive segments. The electricity use EEI was negligible until year 2000 but sizeable thereafter as it started to outpace the counteracting impact from structural change. Results are consistent with previous bottom-up evaluations, and the policy context is further elaborated in a discussion about the role of relevant energy and climate policies in facilitating the enhanced EEI observed over the last decade.

Keywords

Pulp and paper industry Decomposition Energy efficiency Decarbonisation 

Notes

Acknowledgements

This work has been funded by the Swedish Energy Agency’s research programme General Energy Systems Studies (AES).

References

  1. Ang, B. W. (1995). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095.CrossRefGoogle Scholar
  2. Ang, B. W. (2004). Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 32(9), 1131–1139.CrossRefGoogle Scholar
  3. Ang, B. W. (2005). The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7), 867–871.CrossRefMathSciNetGoogle Scholar
  4. Ang, B. W., & Liu, N. (2007). Energy decomposition analysis: IEA model versus other methods. Energy Policy, 35(3), 1426–1432.CrossRefGoogle Scholar
  5. Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRefGoogle Scholar
  6. CEPI. (2011). The forest fibre industry—2050 roadmap to a low-carbon bio-economy. Brussels: Confederation of European Paper Industries.Google Scholar
  7. CEPI. (2013). Key statistics 2012—European pulp and paper industry. Brussels: Confederation of European Paper Industries.Google Scholar
  8. Danske Bank (2013). Skog & Ekonomi—Nyheter från Danske Bank. No 2, May 2013.Google Scholar
  9. Diakoulaki, D., & Mandaraka, M. (2007). Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Economics, 29(4), 636–664.CrossRefGoogle Scholar
  10. EC (2006). Directive 2006/32/EC of the European parliament and of the council of 5 April 2006 on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC. OJ L114. Luxembourg: Publications Office of the European Union.Google Scholar
  11. EC. (2010). Europe 2020—a strategy for smart, sustainable and inclusive growth. COM (2010) 2020 final. Brussels: European Commission.Google Scholar
  12. EC (2012). Directive 2012/27/EU of the European parliament and of the council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. OJ L315. Luxembourg: Publications Office of the European Union.Google Scholar
  13. Ericsson, K., Nilsson, L. J., & Nilsson, M. (2011). New energy strategies in the Swedish pulp and paper industry—the role of national and EU climate and energy policies. Energy Policy, 39(3), 1439–1449.CrossRefGoogle Scholar
  14. Eurostat (2013). “Consumption of energy”. Available at http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Consumption_of_energy. Accessed 15 October 2013
  15. Farla, J., Blok, K., & Schipper, L. (1997). Energy efficiency developments in the pulp and paper industry: a cross-country comparison using physical production data. Energy Policy, 25(7–9), 745–758.CrossRefGoogle Scholar
  16. Gode, J., Martinsson, F., Hagberg, L., Öman, A., Höglund, J., & Palm, D. (2011). Miljöfaktaboken 2011—estimated emission factors for fuels, electricity, heat and transport in Sweden. Stockholm: Värmeforsk Service AB.Google Scholar
  17. Greening, L. A., Boyd, G., & Roop, J. M. (2007). Modeling of industrial energy consumption: an introduction and context. Energy Economics, 29(4), 599–608.CrossRefGoogle Scholar
  18. Gulbrandsen, L., & Stenqvist, C. (2013a). The limited effect of EU emissions trading on corporate climate strategies: comparison of a Swedish and a Norwegian pulp and paper company. Energy Policy, 56(2013), 516–525.CrossRefGoogle Scholar
  19. Gulbrandsen, L., & Stenqvist, C. (2013b). Pulp and paper industry. In J. B. Skjӕrseth & P. O. Eikeland (Eds.), Corporate responses to EU emissions trading: resistance, innovation or responsibility? (pp. 127–164). Farnham: Ashgate.Google Scholar
  20. Haaker, A. (2013). Nu byggs Södras nya pelletsfabrik i Värö. Bioenergi, 1, 22–25.Google Scholar
  21. Henriksson, E., Söderholm, P., & Wårell, L. (2012). Industrial electricity demand and energy efficiency policy: the role of price changes and private R&D in the Swedish pulp and paper industry. Energy Policy, 47(2012), 437–446.CrossRefGoogle Scholar
  22. IEA. (2007). Tracking industrial energy efficiency and CO 2 emissions—in support of the G8 plan of action. Paris: International Energy Agency.Google Scholar
  23. IEA. (2010). Energy technology perspective 2010—scenarios and strategies to 2050. Paris: International Energy Agency.Google Scholar
  24. IEA. (2013). Redrawing the energy-climate map: world energy outlook special report. Paris: International Energy Agency.Google Scholar
  25. IIP and IEA (Ed.). (2012). Energy management programmes for industry: gaining through saving. Washington, DC: Institute for Industrial Productivity.Google Scholar
  26. IPCC. (2007). Climate change 2007: synthesis report. In Core Writing Team, R. K. Pachauri, & A. Reisinger (Eds.), Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on climate Change. Geneva: IPCC.Google Scholar
  27. Isacson, Ö., Cordi, I., Ewetz, J., & Wernelind, Å. (1987). Industrins energianvändning—Analys av de förändringar som ägt rum under perioden 1970–84 [Industrial energy use—analysis of changes in the period 1970–84]. Stockholm: STU-information.Google Scholar
  28. Karltorp, K., & Sandén, B. A. (2012). Explaining regime destabilisation in the pulp and paper industry. Environmental Innovation and Societal Transitions, 2(2012), 66–81.CrossRefGoogle Scholar
  29. Lindmark, M., Bergquist, A., & Andersson, L. F. (2011). Energy transition, carbon dioxide reduction and output growth in the Swedish pulp and paper industry: 1973–2006. Energy Policy, 39(9), 5449–5456.CrossRefGoogle Scholar
  30. Ojala, J., Lamberg, J., Ahola, A., & Melander, A. (2006). The ephemera of success: strategy, structure and performance in the forestry industries. In J. Lamberg, J. Näsi, J. Ojala, & P. Sajasalo (Eds.), The evolution of competitive strategies in global forestry industries: comparative perspectives (pp. 257–286). The Netherlands: Springer.CrossRefGoogle Scholar
  31. Ottosson, M., & Magnusson, T. (2013). Socio-technical regimes and heterogeneous capabilities: the Swedish pulp and paper industry’s response to energy policies. Technology Analysis & Strategic Management, 25(4), 355–368.CrossRefGoogle Scholar
  32. Phylipsen, G. J. M., Blok, K., & Worrell, E. (1998). Handbook on international comparisons of energy efficiency in the manufacturing industry. Utrecht: Department of Science, Technology and Society, Utrecht University.Google Scholar
  33. SEA. (2009). Resultat från PFEs första programperiod. Eskilstuna: Swedish Energy Agency.Google Scholar
  34. SEA. (2012). Energiläget i siffror 2012. Eskilstuna: Swedish Energy Agency.Google Scholar
  35. SEA (2013b). “Resultat period 1: Slutredovisning övriga åtgärder”. Available at http://energimyndigheten.se/sv/Foretag/Energieffektivisering-i-foretag/PFE/Resultat-och-utvardering/Resultat-fran-programmet/. Accessed 20 October 2013
  36. SFA. (1987). Statistical yearbook of forestry 1987. Jönköping: National Board of Forestry.Google Scholar
  37. SFA. (2012). Swedish statistical yearbook of forestry 2012. Jönköping: National Board of Forestry.Google Scholar
  38. SFIF (2013). “Reports”. Available at http://miljodatabas.skogsindustrierna.org/si/main/reportselect.aspx?l1=report. Accessed 16 August 2013
  39. Stenqvist, C. (2013). Industrial energy efficiency improvement—the role of policy and evaluation. Doctoral dissertation. Lund: Lund University.Google Scholar
  40. Stenqvist, C., & Nilsson, L. J. (2012). Energy efficiency in energy-intensive industries—an evaluation of the Swedish voluntary agreement PFE. Energy Efficiency, 5(2), 225–241.CrossRefGoogle Scholar
  41. Thomas, S. (2009). Measuring and reporting energy savings for the energy services directive—how it can be done. Wuppertal: Wuppertal Institute.Google Scholar
  42. Wade, J., Guertler, P., Croft, D., & Sunderland, L. (2011). National energy efficiency and energy saving targets. Stockholm: European Council for an Energy Efficient Economy.Google Scholar
  43. Wiberg, R. (1974). Energiförbrukning i massa- och pappersindustrin 1973 [Energy use in pulp- and paper industry 1973]. Stockholm: Svenska Cellulosa- och Pappersbruksföreningen.Google Scholar
  44. Wiberg, R. (1980). Energiförbrukning i massa- och pappersindustrin 1979 [Energy use in the pulp- and paper industry 1979]. Stockholm: Svenska Cellulosa- och Pappersbruksföreningen.Google Scholar
  45. Wiberg, R. (1985). Energiförbrukning i massa- och pappersindustrin 1984 [Energy use in the pulp- and paper industry 1984]. Stockholm: Svenska Cellulosa- och Pappersbruksföreningen.Google Scholar
  46. Wiberg, R. (1989). Energiförbrukning i massa- och pappersindustrin 1988 [Energy use in the pulp- and paper industry 1988]. Stockholm: Skogsindustrierna.Google Scholar
  47. Wiberg, R. (1995). Energiförbrukning i massa- och pappersindustrin 1994 [Energy use in the pulp- and paper industry 1994]. Stockholm: Skogsindustrierna.Google Scholar
  48. Wiberg, R. (2001). Energiförbrukning i massa- och pappersindustrin 2000 [Energy use in the pulp- and paper industry 2000]. Stockholm: Skogsindustrierna.Google Scholar
  49. Wiberg, R. (2008). Energiförbrukning i massa- och pappersindustrin 2007 [Energy use in the pulp- and paper industry 2007]. Stockholm: Skogsindustrierna.Google Scholar
  50. Wiberg, R., & Forslund, M. (2012). Energiförbrukning i massa- och pappersindustrin 2011 [Energy use in the pulp- and paper industry 2011]. Stockholm: Skogsindustrierna.Google Scholar
  51. Worrell, E., Bernstein, L., Roy, J., Price, L., & Hamisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2(2), 109–123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Environmental and Energy Systems Studies, Department of Technology and Society, Faculty of EngineeringLund UniversityLundSweden

Personalised recommendations