Energy Efficiency

, Volume 7, Issue 6, pp 987–1011 | Cite as

Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

  • Katerina Kermeli
  • Wina H. J. Graus
  • Ernst Worrell
Original Article


The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes into account the implementation of energy efficiency improvement measures. These scenarios cover energy demand in the period 2009–2050 for ten world regions. The reference scenario is based on the International Energy Agency World Energy Outlook (2011 edition) up to 2035 and is extrapolated by Gross Domestic Product projections for the period 2035–2050. According to the reference scenario, the industrial energy use will increase from 105 EJ in 2009 to 185 EJ in 2050 (excluding fuel use as a feedstock). It is estimated that, with the adoption of energy efficient technologies and increased recycling, the growth in industrial energy use in 2050 can be limited to 140 EJ, an annual energy use increase of 0.7 % compared with the 2009 case. The 2050 industrial energy use in the low energy demand scenario is estimated to be 24 % lower than the 2050 energy use in the reference scenario. The results of this study highlight the importance of industrial energy efficiency by providing insights of the energy savings potentials in different regions of the world.


Industrial energy use Energy scenario Industrial energy savings Industrial energy efficiency 



This study is based on previous studies concerning energy demand scenarios prepared for Greenpeace/EREC and UBA in cooperation with DLR. The views and research in this study do not necessarily represent their views.


  1. Bureau of International Recycling (BIR) (2012). World steel recycling in figures 2007–2011: Steel scrap—a raw material for steel making. Accessed 10 July 2013.
  2. Confederation of European Paper Industries (CEPI) (2006). Europe global champion in paper recycling: Paper industries meet ambitious target. Accessed 10 July 2013.
  3. Confederation of European Paper Industries (CEPI) (2011). CEPI sustainability report 2011. Accessed 10 July 2013.
  4. De Beer, J. (1998). Potential for industrial energy-efficiency improvement in the long term. PhD thesis, Utrecht University, Utrecht, the Netherlands.Google Scholar
  5. De Beer, J., Worrell, E., & Blok, K. (1998). Future technologies for energy-efficient iron and steel making. Annual Review of Energy and the Environment, 23, 123–205.CrossRefGoogle Scholar
  6. Energy Information Administration (EIA). (1999). Model documentation report: Industrial sector demand module of the national energy modeling system. Energy Information Administration. Washington, D.C: U.S. Department of Energy.Google Scholar
  7. Eurofer (2011). 2007-2011 European steel in figures. Accessed 6 May 2013.
  8. European Aluminium Association (EAA) (2010). Sustainability of the European aluminium industry 2010. Accessed 15 August 2013.
  9. European Integrated Pollution Prevention and Control Bureau (EIPPCB) (2013). Best available techniques (BAT) reference document for iron and steel production. Accessed 8 July 2013.
  10. European Integrated Pollution Prevention and Control Bureau (EIPPCB) (2010). Reference document on best available techniques in the cement, lime and magnesium oxide manufacturing industries. Accessed 10 May 2013.
  11. Fleiter, T., Schlomann, B., & Eichhammer, W. (2013). Energieverbrauch und CO 2 -Emissionen industrieller Prozesstechnologien—Einsparpotenziale, Hemmnisse und Instrumente, Stuttgart, Germany.Google Scholar
  12. Food and Agriculture Organization Statistics (FAOSTAT) (2013). Forestry statistics. Accessed 29 November 2013.
  13. Fruehan, R. J., Fortini, O., Paxton, H. W., & Brindle, R. (2000). Theoretical minimum energies to produce steel for selected conditions. Pittsburgh: Carnegie Mellon University.CrossRefGoogle Scholar
  14. Global Aluminium Recycling Committee (GARC) (2009). Global aluminium recycling: A cornerstone of sustainable development. Accessed 15 August 2013.
  15. Graus, W., Blomen, E., & Worrell, E. (2011). Global energy efficiency improvement in the long term: A demand- and supply-side perspective. Energy Efficiency, 4, 435–463.CrossRefGoogle Scholar
  16. Graus, W., & Kermeli, K. (2012). Energy demand projections for energy [R]evolution 2012. Utrecht University, commissioned by Greenpeace International and DLR.Google Scholar
  17. Graus, W., & Worrell, E. (2011). Methods for calculating CO2 intensity of power generation and consumption: A global perspective. Energy Policy, 39, 613–627.CrossRefGoogle Scholar
  18. Green, J. A. S. (2007). Aluminum recycling and processing for energy conservation and sustainability. Materials Park: ASM International.Google Scholar
  19. Gu, S., & Wu, J. (2012). Review on the energy saving technologies applied in Bayer process in China (pp. 379–384). Perth: Proceeding of the 9th International alumina quality workshop 2012.Google Scholar
  20. Hekkert, M.P., Joosten L.A.J., & Worrell, E. (1998). Material efficiency improvement for European packaging in the period 2000–2020. In Factor 2 / Factor 10, Utrecht.Google Scholar
  21. Henrickson, L. (2010). The need for energy efficiency in Bayer refining. Proceedings of TMS Annual Meeting – Light Metals, 173-178.Google Scholar
  22. International Aluminium Institute (IAI) 2013a. 2010 Life cycle inventory data for the worldwide primary aluminium industry. Accessed 02 September 2023.
  23. International Aluminium Institute (IAI) 2013b. Current IAI statistics. Accessed 15 May 2013.
  24. International Energy Agency (IEA) (2004). Energy statistics manual. Paris, France.Google Scholar
  25. International Energy Agency (IEA) (2007). Tracking industrial energy efficiency and CO 2 emissions. Paris, France.Google Scholar
  26. International Energy Agency (IEA) (2008). Energy Technology Perspectives 2008—Scenarios And Strategies To 2050. Paris, France.Google Scholar
  27. International Energy Agency (IEA) (2009a). Energy technology transitions for industry: Strategies for the next industrial revolution. Paris, France.Google Scholar
  28. International Energy Agency (IEA). (2009b). Chemical and petrochemical sector: Potential of best practice technology and other measures for improving energy efficiency. Paris: IEA Information Paper.Google Scholar
  29. International Energy Agency (IEA) (2011a). Energy balances 2011 edition with 2009 data. Paris, France.Google Scholar
  30. International Energy Agency (IEA) (2011b). Key world energy statistics-2011. Paris, France.Google Scholar
  31. International Energy Agency (IEA) (2011c). World energy outlook 2011 edition. Paris, France.Google Scholar
  32. International Energy Agency (IEA) (2012). Energy technology perspectives 2012—Pathways to a clean energy system. Paris, France.Google Scholar
  33. International Energy Agency-World Business Council for Sustainable Development (IEA-WBCSD) (2009). Cement technology roadmap 2009—Carbon emissions reductions up to 2050. Accessed 10 May 2013.
  34. Kermeli, K., Worrell, E., & Masanet, E. (2011). Energy efficiency improvement and cost saving opportunities for the concrete industry. Berkeley: Lawrence Berkeley National Laboratory (LBNL).CrossRefGoogle Scholar
  35. Lempert, R.J., Popper, S.W., Resetar, S.A., & Hart, S.L. (2002). Capital cycles and the timing of climate change policy. Pew center on global climate change, Washington, D.C.Google Scholar
  36. Li, W., Liu, J., Liu, Z., & Wang, Y. (2008). The most important sustainable development issues of Chinese alumina industry. Light Metals, 191-195.Google Scholar
  37. Linhoff March (2000). The methodology and benefits of total site pinch analysis. Linhoff March Energy Services.Google Scholar
  38. Milford, R. L., Allwood, J. M., & Cullen, J. M. (2011). Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resources, Conservation and Recycling, 55, 1185–1195.CrossRefGoogle Scholar
  39. Nadel, S. (2012). The rebound effect: Large or small? Washington: American Council for an Energy-Efficient Economy (ACEEE).Google Scholar
  40. Neelis, M., & Patel, M. (2006). Long-term production, energy consumption and CO 2 emission scenarios for the worldwide iron and steel industry. Utrecht University.Google Scholar
  41. Overgaag, M., Harmsen, R., & Schmitz, A. (2009). Sectoral Emission Reduction Potentials and Economic Costs for Climate Change (SERPEC-CC), Industry & refineries sector. Accessed 17 May 2013.
  42. Pardo, N., Moya, J.A., & Vatoppoulos, K. (2012). Prospective scenarios on energy efficiency and CO 2 emissions in the EU iron & steel industry. JRC scientific and policy reports. Luxembourg.Google Scholar
  43. Phylipsen, G.J.M. (2000). International comparisons & national commitments, analysing energy and technology differences in the climate debate. PhD thesis. Utrecht University. Utrecht, The Netherlands.Google Scholar
  44. Ryan, L., & Campbell, L. (2012). Spreading the net: The multiple benefits of energy efficiency improvements. Paris: International Energy Agency (IEA).Google Scholar
  45. Saunders, H. (2013). Is what we think of as “rebound” really just income effects in disguise? Energy Policy, 57, 308–317.MathSciNetCrossRefGoogle Scholar
  46. Saygin, D., Worrell, E., Patel, M. K., & Gielen, D. J. (2011a). Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries. Energy, 36, 6661–6673.CrossRefGoogle Scholar
  47. Saygin, D., Patel, M. K., Worrell, E., Tam, C., & Gielen, D. J. (2011b). Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector. Energy, 36, 5779–5790.CrossRefGoogle Scholar
  48. Saygin, D., Patel, M.K., & Gielen, D.J. (2010). Global industrial energy efficiency benchmarking—An energy policy tool. Working paper. Vienna, Austria.Google Scholar
  49. Sinton, J. E., Lewis, J. I., Price, L. K., & Worrell, E. (2002). China’s sustainable energy future scenarios and carbon emissions analysis. Sub-report 11: International trends in energy efficiency technologies and policies. Berkeley: Lawrence Berkeley National Laboratory (LBNL).Google Scholar
  50. Smith, P. (2009). The processing of high silica bauxites—Review of existing and potential processes. Hydrometallurgy, 98, 162–176.CrossRefGoogle Scholar
  51. Sorrell, S., Dimitropoulos, J., & Sommerville, M. (2009). Empirical estimates of the rebound effect: A review. Energy Policy, 37, 1356–1371.CrossRefGoogle Scholar
  52. Staudt, J. (2009). Memorandum to Ravi Srivastava, Samudra Vijay, and Elineth Torres. Costs and performance of controls—Revised from comments. Andover Technology Partners.Google Scholar
  53. Trudeau, N., Tam, C., Craczyk, D., & Taylor, P. (2011). Energy transition for industry: India and the global context. Paris: IEA Information Paper.CrossRefGoogle Scholar
  54. UBA (2010). Role and potential of renewable energy and energy efficiency for global energy supply. By DLR/Ecofys/Wuppertal Institute. Commissioned by Ministry of Environment, Germany.Google Scholar
  55. United States Department of Energy, Energy Efficiency and Renewable Energy (U.S. DOE-EERE) (2007). U.S. energy requirements for aluminium production, historical perspective, theoretical limits and current practices. Accessed August 5 2013.
  56. United States Geological Survey (USGS) (2002). 2002 Minerals yearbook—Cement [advance release]. Reston, United States.Google Scholar
  57. United States Geological Survey (USGS) (2007). 2005 Minerals yearbook—Cement [advance release]. Reston, United States.Google Scholar
  58. United States Geological Survey (USGS) (2011a). 2010 Minerals yearbook—Aluminum [advance release]. Reston, United States.Google Scholar
  59. United States Geological Survey (USGS) (2011b). 2010 Minerals yearbook—Bauxite and alumina [advance release]. Reston, United States.Google Scholar
  60. United States Geological Survey (USGS) (2012). 2010 Minerals yearbook—Cement [advance release]. Reston, United States.Google Scholar
  61. Waide P., & Brunner, C.U. (2011). Energy-efficiency policy opportunities for electric motor-driven systems. International Energy Agency (IEA), working paper. Paris, France.Google Scholar
  62. Wei, T. (2010). A general equilibrium view of global rebound effects. Energy Economics, 32(3), 661–672.CrossRefGoogle Scholar
  63. Wischnewski, R., de Azevedo, C. M., Jr., Moraes, E. L. S., Jr., & Monteiro, A. B. (2011). ALUNORTE global energy efficiency. Light Metals, 2011, 179–184.Google Scholar
  64. World Business Council for Sustainable Development/Cement Sustainability Initiative (WBCSD/CSI) (2012). Global cement database on CO2 and energy information. Accessed 17 May 2013.
  65. World Business Council for Sustainable Development/Cement Sustainability Initiative-European Cement Research Academy (WBCSD/CSI-ECRA) (2009). Development of state of the art-techniques in cement manufacturing: Trying to look ahead. Dusseldorf, Geneva.Google Scholar
  66. World Bank. (2013). World Development Indicators (WDI) 2009. Washington: World Bank.Google Scholar
  67. World Steel Association (Worldsteel) (2000). Steel statistical yearbook 2000.
  68. World Steel Association (Worldsteel) (2011). Steel statistical yearbook 2011.
  69. Worrell, E., Faaij, A. P. C., Phylipsen, G. J. M., & Blok, K. (1995). An approach for analysing the potential for material efficiency improvement. Resources, Conservation and Recycling, 13, 215–232.CrossRefGoogle Scholar
  70. Worrell, E., Martin, N., & Price, L. (1999). Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S, iron and steel sector. Berkeley: Lawrence Berkeley National Laboratory (LBNL).CrossRefGoogle Scholar
  71. Worrell, E., & Biermans, G. (2005). Move over! Stock turnover, retrofit and industrial energy efficiency. Energy Policy, 33(7), 949–962.CrossRefGoogle Scholar
  72. Worrell, E., & Galitsky, C. (2008). Energy efficiency improvement and cost saving opportunities for cement making. Berkeley: Lawrence Berkeley National Laboratory (LBNL).CrossRefGoogle Scholar
  73. Worrell, E., Galitsky, C., Masanet, E., & Graus, W. (2008a). Energy efficiency improvement and cost saving opportunities for the glass industry. Berkeley: Lawrence Berkeley National Laboratory (LBNL).CrossRefGoogle Scholar
  74. Worrell, E., Price, L., Neelis, M., Galitsky, C., & Nan, Z. (2008b). World best practice energy intensity values for selected industrial sectors. Berkeley: Lawrence Berkeley National Laboratory (LBNL).Google Scholar
  75. Worrell, E., Angelini, T., & Masanet, E. (2010). Managing your energy. Berkeley: Lawrence Berkeley National Laboratory (LBNL).Google Scholar
  76. Worrell, E., Kermeli, K., & Galitsky, C. (2013). Energy efficiency improvement and cost saving opportunities for cement making. Washington DC: United States Environmental Protection Agency (U.S. EPA).Google Scholar
  77. Xu, J.-H., Fleiter, T., Eichhammer, W., & Fan, Y. (2012). Energy consumption and CO2 emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 50, 821–832.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Katerina Kermeli
    • 1
  • Wina H. J. Graus
    • 1
  • Ernst Worrell
    • 1
  1. 1.Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations