Energy Efficiency

, Volume 7, Issue 2, pp 335–351 | Cite as

Review of automated fault detection and diagnostic tools in air handling units

  • Ken Bruton
  • Paul Raftery
  • Barry Kennedy
  • Marcus M. Keane
  • D. T. J. O’Sullivan
Review Article


Studies have indicated that 20–30 % HVAC system energy savings are achievable by recommissioning air handling units (AHU) to rectify faulty operation. Studies have also demonstrated that on-going commissioning of building systems for optimum efficiency can yield savings of an average of over 20 % of total energy cost. Automated fault detection and diagnosis (AFDD) is a process concerned with automating the detection of faults and their causes in physical systems. AFDD can be used to assist the commissioning process at multiple stages. This article presents a review of the research work that has been carried out on the use of AFDD tools in improving the efficiency of AHUs. This updates and expands upon the most recent literature review in this area, published in 2005. The article offers a comparative analysis of the FDD techniques currently in use and offers an opinion as to which show most potential for widespread adoption as part of the on-going commissioning process. It then details the issues which have impeded the adoption of existing AFDD tools for AHUs to date before concluding with an appraisal of current and recommended areas for future research to overcome the barriers to the widespread adoption of AFDD tools in AHUs.


Heating Ventilation and air conditioning (HVAC) Fault detection and diagnosis (FDD) Energy efficient buildings Commissioning Air handling unit (AHU) 



This research was funded by Enterprise Ireland. The authors would like to thank the Innovation for Irelands Energy Efficiency (i2e2) Technology Centre.


  1. “BACnet Website.” (2011). Accessed December 6.
  2. Berton, A., & Hodouin, D. (2003). Linear and bilinear fault detection and diagnosis based on mass and energy balance equations. Control Engineering Practise, 11(1), 103–113. doi: 10.1016/S0967-0661(02)00116-8.CrossRefGoogle Scholar
  3. Chen, Y., & Lan, L. (2010). Fault detection, diagnosis and data recovery for a real building heating/cooling billing system. Energy Conversion and Management, 51(5), 1015–1024. doi: 10.1016/j.enconman.2009.12.004.CrossRefGoogle Scholar
  4. “DABO.” software. Accessed 27 May 2013.
  5. Choinière, D., Corsi, M. (2003). “A BEMS Assisted Commissioning Tool to Improve the Energy Performance of HVAC Systems.” In ICEBO.
  6. Djuric, N., & Novakovic, V. (2009). Review of possibilities and necessities for building lifetime commissioning. Renewable and Sustainable Energy Reviews, 13(2), 486–492. doi: 10.1016/j.rser.2007.11.007.CrossRefGoogle Scholar
  7. Doukas, H., Nychtis, C., & Psarras, J. (2009). Assessing energy-saving measures in buildings through an intelligent decision support model. Building and Environment, 44(2), 290–298. doi: 10.1016/j.buildenv.2008.03.006.CrossRefGoogle Scholar
  8. Doukas, H., Patlitzianas, K. D., Latropoulos, K., & Psarras, J. (2007). Intelligent building energy management system using rule sets. Building and Environment, 42(10), 3562–3569. doi: 10.1016/j.buildenv.2006.10.024.CrossRefGoogle Scholar
  9. Du, Z., Jin, X., & Wu, L. (2007). Fault detection and diagnosis based on improved PCA with JAA method in VAV systems. Building and Environment, 42(9), 3221–3232. doi: 10.1016/j.buildenv.2006.08.011.CrossRefGoogle Scholar
  10. Du, Z., Jin, X., & Yang, Y. (2009). Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network. Applied Energy, 86(9), 1624–1631. doi: 10.1016/j.apenergy.2009.01.015.CrossRefGoogle Scholar
  11. Facility Dynamics. “PACRAT.” Accessed 13 September 2011
  12. Ginestet, S., & Marchio, D. (2010). Retro and on-going commissioning tool applied to an existing building: operability and results of IPMVP. Energy, 35(4), 1717–1723. doi: 10.1016/ Scholar
  13. Gordon, L. (2002). Modelling user acceptance of building management systems. Automation in Construction, 11(6), 695–705. doi: 10.1016/S0926-5805(02)00010-9.CrossRefGoogle Scholar
  14. Han, H., Gu, B., Kang, J., & Li, Z. R. (2011a). Study on a hybrid SVM model for chiller FDD applications. Applied Thermal Engineering, 31(4), 582–592. doi: 10.1016/j.applthermaleng.2010.10.021.CrossRefGoogle Scholar
  15. Han, H., Gu, B., Wang, T., & Li, Z. R. (2011b). Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning. International Journal of Refrigeration, 34(2), 586–599. doi: 10.1016/j.ijrefrig.2010.08.011.CrossRefGoogle Scholar
  16. Hao, X., Zhang, G., & Chen, Y. (2005). Fault-tolerant control and data recovery in HVAC monitoring system. Energy and Buildings, 37(2), 175–180. doi: 10.1016/j.enbuild.2004.06.023.CrossRefGoogle Scholar
  17. House, J. M., Vaezi-Nejad, H., Whitcomb, J. M. (2001). “An Expert Rule Set for Fault Detection in Air Handling Units.” Ashrae Transactions Part 1 (107).
  18. “HVAC Special Working Group – Spin III, 2009.” (2011). Accessed September 13.
  19. International Energy Agency. (1996). “Real-time HEVAC simulation”. 25Google Scholar
  20. International Energy Agency. (2002). “Computer-aided evaluation of HVAC system performance” 34Google Scholar
  21. International Energy Agency. (2006). “Commissioning of Building HVAC Systems for Improved Energy Performance”. 40.Google Scholar
  22. International Energy Agency. (2010). “Cost-effective commissioning of existing and low energy buildings” 47.Google Scholar
  23. ISO - International Organisation for Standardisation, and ISO - International Organisation for Standardisation. (2011). “ISO - International Organisation for Standardisation”. Text. Accessed September 13.
  24. “ISO 13381–1:2004 - Condition Monitoring and Diagnostics of Machines -- Prognostics -- Part 1: General Guidelines.” 2011. Accessed December 6.
  25. Jang, W.-S., Healy, W. M., & Skibniewski, M. J. (2008). Wireless sensor networks as part of a web-based building environmental Monitoring system. Automation in Construction, 17(6), 729–736. doi: 10.1016/j.autcon.2008.02.001.CrossRefGoogle Scholar
  26. Karlsson, M. (2011). The {MIND} method: a decision support for optimization of industrial energy systems—principles and case studies. Applied Energy, 88(3), 577–589. doi: 10.1016/j.apenergy.2010.08.021.MathSciNetCrossRefGoogle Scholar
  27. Katipamula, S., & Brambley, M. R. (2005a). Review article: methods for fault detection, diagnostics, and prognostics for building systems—a review, Part I. HVAC&R Research, 11(1), 3–25. doi: 10.1080/10789669.2005.10391123.CrossRefGoogle Scholar
  28. Katipamula, S., & Brambley, M. R. (2005b). Review article: methods for fault detection, diagnostics, and prognostics for building systems—a review, Part II. HVAC&R Research, 11(2), 169–187. doi: 10.1080/10789669.2005.10391133.CrossRefGoogle Scholar
  29. Le, T. H., Knabe, G., & Henze, G. P. (2005). Fault Detection and Diagnosis for Control Strategies in Air Handling Units. Montreal: In IBPSA.Google Scholar
  30. Lee, S. H., & Yik, F. W. H. (2010). A study on the energy penalty of various air-side system faults in buildings. International Conference on Building Energy and Environment (COBEE 2008), 42(1), 2–10. doi: 10.1016/j.enbuild.2009.07.004.CrossRefGoogle Scholar
  31. Lee, S. Uk., Painter, F. L., Claridge, D. E. (2007) “Whole Building Commercial HVAC System Simulation for Use in Energy Consumption Fault Detection.” Ashrae Transactions 113 (Part 2).Google Scholar
  32. Liang, J., & Du, R. (2007). Model-based fault detection and diagnosis of HVAC systems using support vector machine method. International Journal of Refrigeration, 30(6), 1104–1114. doi: 10.1016/j.ijrefrig.2006.12.012.CrossRefGoogle Scholar
  33. Lo, C. H., Chan, P. T., Wong, Y. K., Rad, A. B., & Cheung, K. L. (2007). Fuzzy-genetic algorithm for automatic fault detection in HVAC systems. Applied Soft Computing, 7(2), 554–560. doi: 10.1016/j.asoc.2006.06.003.CrossRefGoogle Scholar
  34. “LonMark International.” 2011. Accessed December 6.
  35. Mařík, K., Schindler, Z., & Stluka, P. (2008). Decision support tools for advanced energy management. Energy, 33(6), 858–873. doi: 10.1016/ Scholar
  36. Matelli, J. A., Bazzo, E., & da Silva, J. C. (2011). Development of a case-based reasoning prototype for cogeneration plant design. Applied Energy, 88(9), 3030–3041. doi: 10.1016/j.apenergy.2011.03.006.CrossRefGoogle Scholar
  37. Pakanen, J. E., & Sundquist, T. (2003). Automation-assisted fault detection of an air-handling unit; implementing the method in a real building. Energy and Buildings, 35(2), 193–202. doi: 10.1016/S0378-7788(02)00050-6.CrossRefGoogle Scholar
  38. Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394–398. doi: 10.1016/j.enbuild.2007.03.007.CrossRefGoogle Scholar
  39. Piette, M. A., Kinney, S. K., & Haves, P. (2001). Analysis of an information monitoring and diagnostic system to improve building operations. Energy and Buildings, 33(8), 783–791. doi: 10.1016/S0378-7788(01)00068-8.CrossRefGoogle Scholar
  40. Salsbury, T. I., & Diamond, R. C. (2001). Fault detection in HVAC systems using model-based feed forward control. Energy and Buildings, 33(4), 403–415. doi: 10.1016/S0378-7788(00)00122-5.CrossRefGoogle Scholar
  41. Schein, J. (2006). “Results from Field Testing of Embedded Air Handling Unit and Variable Air Volume Box Fault Detection Tools”. NIST.
  42. Schein, J., Bushby, S. T., Castro, N. S., & House, J. M. (2006). A rule-based fault detection method for air handling units. Energy and Buildings, 38(12), 1485–1492. doi: 10.1016/j.enbuild.2006.04.014.CrossRefGoogle Scholar
  43. Seem, J. E. (2007). Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and Buildings, 39(1), 52–58. doi: 10.1016/j.enbuild.2006.03.033.CrossRefGoogle Scholar
  44. Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803–1836. doi: 10.1016/j.ymssp.2010.11.018.CrossRefGoogle Scholar
  45. Song, Y.-h., Akashi, Y., & Yee, J.-J. (2008). A development of easy-to-use tool for fault detection and diagnosis in building air-conditioning systems. Energy and Buildings, 40(2), 71–82. doi: 10.1016/j.enbuild.2007.01.011.CrossRefGoogle Scholar
  46. Wang, H., Chen, Y., Chan, C. W. H., & Qin, J. (2012a). An online fault diagnosis tool of VAV terminals for building management and control systems. Planning Future Cities-Selected Papers from the 2010 eCAADe Conference, 22(March), 203–211. doi: 10.1016/j.autcon.2011.06.018.Google Scholar
  47. Wang, H., Chen, Y., Chan, C. W. H., Qin, J., & Wang, J. (2012b). Online model-based fault detection and diagnosis strategy for VAV air handling units. Cool Roofs, Cool Pavements, Cool Cities, and Cool World, 55(December), 252–263. doi: 10.1016/j.enbuild.2012.08.016.Google Scholar
  48. Wang, H., Chai, T.-Y., Ding, J.-L., & Brown, M. (2009). Data driven fault diagnosis and fault tolerant control: some advances and possible new directions. Acta Automatica Sinica, 35(6), 739–747. doi: 10.1016/S1874-1029(08)60093-2.MathSciNetCrossRefGoogle Scholar
  49. Wang, S., & Xiao, F. (2004). AHU sensor fault diagnosis using principal component analysis method. Energy and Buildings, 36(2), 147–160. doi: 10.1016/j.enbuild.2003.10.002.CrossRefGoogle Scholar
  50. Wang, S., Zhou, Q., & Xiao, F. (2010). A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults. Energy and Buildings, 42(4), 477–490. doi: 10.1016/j.enbuild.2009.10.017.CrossRefGoogle Scholar
  51. West, S. R., Yinh Guo, X., Wang, R., & Wall, J. (2011). Automated Fault Detection and Diagnosis of HVAC Subsystems Using Statistical Machine Learning. Sydney: IBPSA.Google Scholar
  52. Wu, S., & Sun, J.-Q. (2011). Cross-level fault detection and diagnosis of building HVAC systems. Building and Environment, 46(8), 1558–1566. doi: 10.1016/j.buildenv.2011.01.017.CrossRefGoogle Scholar
  53. Xiao, F., & Wang, S. (2009). Progress and methodologies of lifecycle commissioning of HVAC systems to enhance building sustainability. Renewable and Sustainable Energy Reviews, 13(5), 1144–1149. doi: 10.1016/j.rser.2008.03.006.MathSciNetCrossRefGoogle Scholar
  54. Yang, H., Cho, S., Tae, C.-S., & Zaheeruddin, M. (2008). Sequential rule-based algorithms for temperature sensor fault detection in air handling units. Energy Conversion and Management, 49(8), 2291–2306. doi: 10.1016/j.enconman.2008.01.029.CrossRefGoogle Scholar
  55. Yoshida, H., & Kumar, S. (2001). Development of {ARX} model based off-line {FDD} technique for energy efficient buildings. Renewable Energy, 22((1–3), 53–59. doi: 10.1016/S0960-1481(00)00033-1.CrossRefGoogle Scholar
  56. Yoshida, H., Kumar, S., & Morita, Y. (2001). Online fault detection and diagnosis in VAV Air handling unit by RARX modelling. Energy and Buildings, 33(4), 391–401. doi: 10.1016/S0378-7788(00)00121-3.CrossRefGoogle Scholar
  57. Yu, B., Dolf, H. C., Paassen, V., & Riahy, S. (2002). General modelling for model-based FDD on building HVAC system. Simulation Practise and Theory, 9(6–8), 387–397. doi: 10.1016/S1569-190X(02)00062-X.zbMATHCrossRefGoogle Scholar
  58. Zhu, Y., Jin, X., & Du, Z. (2012). Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal. Energy and Buildings, 44(January), 7–16. doi: 10.1016/j.enbuild.2011.09.043.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ken Bruton
    • 1
  • Paul Raftery
    • 2
  • Barry Kennedy
    • 3
  • Marcus M. Keane
    • 2
  • D. T. J. O’Sullivan
    • 1
  1. 1.Department of Civil & Environmental EngineeringUniversity College CorkCorkRepublic of Ireland
  2. 2.Informatics Research Unit for Sustainable EngineeringNational University of Ireland, GalwayGalwayIreland
  3. 3.Innovation for Ireland’s Energy Efficiency (I2E2)LeixlipIreland

Personalised recommendations