Advertisement

Energy Efficiency

, Volume 2, Issue 2, pp 195–206 | Cite as

Energy intensities and greenhouse gas emission mitigation in global agriculture

  • Uwe A. SchneiderEmail author
  • Pete Smith
Article

Abstract

Energy efficiency and greenhouse gas emissions are closely linked. This paper reviews agricultural options to reduce energy intensities and their impacts, discusses important accounting issues related to system boundaries, land scarcity, and measurement units and compares agricultural energy intensities and improvement potentials on an international level. Agricultural development in recent decades, while increasing yields, has led to lower average energy efficiencies when comparing the 1960s and the mid 1980s. In the two decades thereafter, energy intensities in developed countries increased, but with little impact on greenhouse gas emissions. Efficiency differences across countries in the year 2000 suggest a maximum improvement potential of 500 million tons of CO2 annually. If only below average countries would increase their energy efficiency to average levels of the year 2000, the resulting emission reductions would be below 200 million tons of CO2 annually.

Keywords

Energy intensity Agriculture Greenhouse gas emissions Global mitigation potential Fertilizer efficiency 

References

  1. Ackerman, D., & Tellis, G. (2001). Can culture affect prices? A cross-cultural study of shopping and retail prices. Journal of Retailing, 77(1), 57–82. doi: 10.1016/S0022-4359(00)00046-4.CrossRefGoogle Scholar
  2. Alcantara, V., & Roca, J. (1995). Energy and Co2 Emissions in Spain—methodology of analysis and some results for 1980–90. Energy Economics, 17(3), 221–230. doi: 10.1016/0140-9883(95)00014-L.CrossRefGoogle Scholar
  3. Amon, B., Amon, T., Alt, C., Moitzi, G., & Boxberger, J. (2001). Nitrous oxide emissions from cattle production systems and mitigation options. Phyton-Annales Rei Botanicae, 41(3), 17–28.Google Scholar
  4. Antle, J. M., Capalbo, S. M., Elliott, E. T., & Paustian, K. H. (2004). Adaptation, spatial heterogeneity, and the vulnerability of agricultural systems to climate change and CO2 fertilization: an integrated assessment approach. Climatic Change, 64(3), 289–315. doi: 10.1023/B:CLIM.0000025748.49738.93.CrossRefGoogle Scholar
  5. Beadle, C. L., & Long, S. P. (1985). Photosynthesis—is it limiting to biomass production. Biomass, 8(2), 119–168. doi: 10.1016/0144-4565(85)90022-8.CrossRefGoogle Scholar
  6. Bruhn, C. M. (2007). Enhancing consumer acceptance of new processing technologies. Innovative Food Science & Emerging Technologies, 8(4), 555–558. doi: 10.1016/j.ifset.2007.04.006.CrossRefGoogle Scholar
  7. Bugbee, B. G., & Salisbury, F. B. (1988). Exploring the limits of crop productivity : I. photosynthetic efficiency of wheat in high irradiance environments. Plant Physiology, 88(3), 869–878.CrossRefGoogle Scholar
  8. Capelle, A., & Tittonel, E. D. (1999). Crambe, a potential non food oil crop. I Production. Agro Food Industry Hi-Tech, 10(1), 22–27.Google Scholar
  9. Chen, D. W. (2001). Environmental challenges of animal agriculture and the role and task of animal nutrition in environmental protection—review. Asian-Australasian Journal of Animal Sciences, 14(3), 423–431.Google Scholar
  10. Cowie, A., Schneider, U. A., & Montanarella, L. (2007). Potential synergies between existing multilateral environmental agreements in the implementation of land use, land-use change and forestry activities. Environmental Science & Policy, 10(4), 335–352. doi: 10.1016/j.envsci.2007.03.002.CrossRefGoogle Scholar
  11. Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2008). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8(2), 389–395.CrossRefGoogle Scholar
  12. De Cara, S., & Jayet, P. A. (2000). Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France. European Review of Agriculture Economics, 27(3), 281–303. doi: 10.1093/erae/27.3.281.CrossRefGoogle Scholar
  13. Deike, S., Pallutt, B., & Christen, O. (2008). Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. European Journal of Agronomy, 28(3), 461–470. doi: 10.1016/j.eja.2007.11.009.CrossRefGoogle Scholar
  14. Department for Transport. (2008). Carbon and sustainability reporting within the renewable transport fuel obligation. requirements and guidance. Government Recommendation to the Office of the Renewable Fuels Agency, Department for Transport, UK Government. Retrieved October 5th, 2008 from http://www.dft.gov.uk/pgr/roads/environment/rtfo/govrecrfa.pdf.
  15. Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., et al. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74(1), 37–66. doi: 10.1016/S0378-4290(01)00197-6.CrossRefGoogle Scholar
  16. Edwards, B. K., Howitt, R. E., & Flaim, S. J. (1996). Fuel, crop, and water substitution in irrigated agriculture. Resource and Energy Economics, 18(3), 311–331. doi: 10.1016/S0928-7655(96)00011-5.CrossRefGoogle Scholar
  17. Ellert, B. H., & Janzen, H. H. (2008). Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Canadian Journal of Soil Science, 88(2), 207–217.Google Scholar
  18. EIA (2008). Annual Energy Review 2007. Energy Information Administration. DOE/EIA-0384. http://www.eia.doe.gov/aer.
  19. Eshel, G., & Martin, P. A. (2006). Diet, energy, and global warming. Earth Interactions, 10, 1–17.CrossRefGoogle Scholar
  20. Food and Agricultural Organization (2008). Nutritive factors. The statistics division. Available online: http://www.fao.org/es/ess/xxx.asp.
  21. Getz, D., & Brown, G. (2006). Critical success factors for wine tourism regions: a demand analysis. Tourism Management, 27(1), 146–158. doi: 10.1016/j.tourman.2004.08.002.CrossRefGoogle Scholar
  22. Glancey, J. L., & Kee, E. (2003). Technical and strategic advances in mechanization. HortScience, 38(5).Google Scholar
  23. Gundogmus, E. (2006). Energy use on organic farming: a comparative analysis on organic versus conventional apricot production on small holdings in Turkey. Energy Conversion and Management, 47(18–19), 3351–3359. doi: 10.1016/j.enconman.2006.01.001.CrossRefGoogle Scholar
  24. Heyland, K. U., & Solansky, S. (1979). Energieeinsatz und Energieumsetzung im Bereich der Pflanzenproduktion. Agrarwirtschaft und Energie, Berichte über die Landwirtschaft (Sonderheft 195), 15–30.Google Scholar
  25. Hoeppner, J. W., Entz, M. H., McConkey, B. G., Zentner, R. P., & Nagy, C. N. (2006). Energy use and efficiency in two Canadian organic and conventional crop production systems. Renewable Agriculture and Food Systems, 21(1), 60–67. doi: 10.1079/RAF2005118.CrossRefGoogle Scholar
  26. Hughes, T.-P. (1987). The evolution of large technological systems. In W.-E. Bijker, & T.-P. Hughes (Eds.), The social construction of technological systems (pp. 51–83). Cambridge, Massachusetts: M.I.T. Press (Reissued 1990).Google Scholar
  27. Kaltsas, A. M., Mamolos, A. P., Tsatsarelis, C. A., Nanos, G. D., & Kalburtji, K. L. (2007). Energy budget in organic and conventional olive groves. Agriculture Ecosystems & Environment, 122(2), 243–251. doi: 10.1016/j.agee.2007.01.017.CrossRefGoogle Scholar
  28. Kaushik, N., Kumar, K., & Kumar, S. (2007). Potential of Jatropha curcas for biofuels. Journal of Biobased Materials and Bioenergy, 1(3), 301–314. doi: 10.1166/jbmb.2007.002.CrossRefGoogle Scholar
  29. Koch, G. (2007). The genetic basis of yield potential and breeding in sugarbeet. Zuckerindustrie, 132(1), 43–49.Google Scholar
  30. Landøkonomisk Oversigt. (1999). Udgivet af De Danske Landboforeninger. (Agricultural-economic summary 1999, issued by the Danish Farmer's Union). Available online: www.ddl.dk
  31. Lee, H. C., McCarl, B., Schneider, U., & Chen, C. C. (2007). Leakage and comparative advantage implications of agricultural participation in greenhouse gas emission mitigation. Mitigation and Adaptation Strategies for Global Change, 12(4), 471–494. doi: 10.1007/s11027-006-2941-y.CrossRefGoogle Scholar
  32. Lieffering, M., Newton, P., & Thiele, J. H. (2008). Greenhouse gas and energy balance of dairy farms using unutilised pasture co-digested with effluent for biogas production. Australian Journal of Experimental Agriculture, 48, 104–108. doi: 10.1071/EA07252.CrossRefGoogle Scholar
  33. Liu, X. J. J., Mosier, A. R., Halvorson, A. D., Reule, C. A., & Zhang, F. S. (2007). Dinitrogen and N2O emissions in arable soils: effect of tillage, N source and soil moisture. Soil Biology & Biochemistry, 39(9), 2362–2370. doi: 10.1016/j.soilbio.2007.04.008.CrossRefGoogle Scholar
  34. Mendoza, T. C. (2005). An energy-based analysis of organic, low external input sustainable agriculture (LEISA) and conventional rice production in the Philippines. Philippine Agricultural Scientist, 88(3), 257–267.Google Scholar
  35. Monteny, G. J., Bannink, A., & Chadwick, D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agriculture Ecosystems & Environment, 112(2–3), 163–170. doi: 10.1016/j.agee.2005.08.015.CrossRefGoogle Scholar
  36. Nkakini, S. O., Ayotamuno, M. J., Ogaji, S. O. T., & Probert, S. D. (2006). Farm mechanization leading to more effective energy-utilizations for cassava and yam cultivations in Rivers State, Nigeria. Applied Energy, 83(12), 1317–1325. doi: 10.1016/j.apenergy.2006.03.001.CrossRefGoogle Scholar
  37. Olk, D. C., Cassman, K. G., Simbahan, G., Cruz, P. C. S., Abdulrachman, S., Nagarajan, R., et al. (1999). Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity, factor productivity, and agronomic efficiency. Nutrient Cycling in Agroecosystems, 53(1), 35–41. doi: 10.1023/A:1009728622410.CrossRefGoogle Scholar
  38. Podolny, J. M., & Stuart, T. E. (1995). A role-based ecology of technological-change. American Journal of Sociology, 100(5), 1224–1260. doi: 10.1086/230637.CrossRefGoogle Scholar
  39. Raitzer, D. A., & Kelley, T. G. (2008). Benefit-cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR. Agricultural Systems, 96(1–3), 108–123. doi: 10.1016/j.agsy.2007.06.004.CrossRefGoogle Scholar
  40. Ramsden, S., Gibbons, J., & Wilson, P. (1999). Impacts of changing relative prices on farm level dairy production in the UK. Agricultural Systems, 62(3), 201–215. doi: 10.1016/S0308-521X(99)00065-7.CrossRefGoogle Scholar
  41. Rathke, G. W., Wienhold, B. J., Wilheim, W. W., & Diepenbrock, W. (2007). Tillage and rotation effect on corn-soybean energy balances in eastern Nebraska. Soil & Tillage Research, 97, 60–70. doi: 10.1016/j.still.2007.08.008.CrossRefGoogle Scholar
  42. Robert, P. C. (2002). Precision agriculture: a challenge for crop nutrition management. Plant and Soil, 247(1), 143–149. doi: 10.1023/A:1021171514148.CrossRefGoogle Scholar
  43. Roos, A. (1998). Nontechnical barriers and driving forces to bioenergy market growth in USA, Austria and Sweden—the role of policy and market structure. Biomass for Energy and Industry, 1154–1157.Google Scholar
  44. Sabri, H. M., Wilson, H. R., Wilcox, C. J., & Harms, R. H. (1991). Comparison of energy-utilization efficiency among 6 lines of White Leghorns. Poultry Science, 70(2), 229–233.Google Scholar
  45. Sakellariou-Makrantonaki, M., Papalexis, D., Nakos, N., & Kalavrouziotis, I. K. (2007). Effect of modern irrigation methods on growth and energy production of sweet sorghum (var. Keller) on a dry year in Central Greece. Agricultural Water Management, 90(3), 181–189. doi: 10.1016/j.agwat.2007.03.004.CrossRefGoogle Scholar
  46. Schneider, U. A., & Kumar, P. (2008). Greenhouse gas mitigation through agriculture. Choices (New York, N.Y.), 23(1), 19–23.Google Scholar
  47. Schneider, U. A., & McCarl, B. A. (2003). Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environmental and Resource Economics, 24(4), 291–312. doi: 10.1023/A:1023632309097.CrossRefGoogle Scholar
  48. Schneider, U. A., & McCarl, B. A. (2006). Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions. Agricultural Economics, 35(3), 277–287. doi: 10.1111/j.1574-0862.2006.00162.x.CrossRefGoogle Scholar
  49. Schneider, U. A., Havlik, P., Schmid, E., Huck, I., Obersteiner, M., Sauer, T., et al. (2008). Global interdependencies between population, water, food, and environmental policies. Environmental Science & Policy (Special Issuse GEC and Food Systems).Google Scholar
  50. Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F. X., Elobeid, A., Fabiosa, J., et al. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240. doi: 10.1126/science.1151861.CrossRefGoogle Scholar
  51. Siegel, O. (1979). Energieeinsparung in der Pflanzenproduktion im Bereich Pflanzenernährung. Agrarwirtschaft und Energie, Berichte über die Landwirtschaft (Sonderheft 195), 135–141.Google Scholar
  52. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2007a). Agriculture. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  53. Smith, P., Martino, D., Cai, Z. C., Gwary, D., Janzen, H., Kumar, P., et al. (2007b). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture Ecosystems & Environment, 118(1–4), 6–28. doi: 10.1016/j.agee.2006.06.006.CrossRefGoogle Scholar
  54. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B-Biological Sciences, 363, 789–813. doi: 10.1098/rstb.2007.2184.CrossRefGoogle Scholar
  55. Traxler, G., & Byerlee, D. (2001). Linking technical change to research effort: an examination of aggregation and spillovers effects. Agricultural Economics, 24(3), 235–246. doi: 10.1111/j.1574-0862.2001.tb00027.x.CrossRefGoogle Scholar
  56. Tzilivakis, J., Warner, D. J., May, M., Lewis, K. A., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2), 101–119. doi: 10.1016/j.agsy.2004.07.015.CrossRefGoogle Scholar
  57. van Beilen, J. B., & Poirier, Y. (2007). Establishment of new crops for the production of natural rubber. Trends in Biotechnology, 25(11), 522–529.CrossRefGoogle Scholar
  58. van der Meer, H. G. (2008). Optimising manure management for GHG outcomes. Australian Journal of Experimental Agriculture, 48(1–2), 38–45. doi: 10.1071/EA07214.CrossRefGoogle Scholar
  59. Yu, L., Li, D., Yu, S., Zou, J., Tao, M., & Wu, Z. (2006). Research advances in slow/controlled release fertilizers. Shengtaixue Zazhi, 25(12), 1559–1563.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Research Unit Sustainability and Global Change, Departments of Geosciences and EconomicsHamburg UniversityHamburgGermany
  2. 2.Institute of Biological and Environmental Sciences, School of Biological SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations